• Hive简记


    在大数据工作中难免遇到数据仓库(OLAP)架构,以及通过Hive SQL简化分布式计算的场景。所以想通过这篇博客对Hive使用有一个大致总结,希望道友多多指教!

    摘要:

      1.Hive安装

      2.Hive DDL命令

      3.Hive DML初步

      4.Hive DML高级

      5.Hive与HBASE,MongoDB等整合

      6.Hive 优化与配置参数

            附:SQL执行顺序

      7.Hive 复杂数据类型

      8.Hive group by聚合增强

    内容:

      1.Hive安装

      依赖:mysql,jdk,hadoop

      安装文档参考:官方文档;注意这里hive默认使用Derby数据库,只支持单用户登录。修改具体配置请参考官网说明:

    Metadata Store

    Metadata is in an embedded Derby database whose disk storage location is determined by the Hive configuration variable named javax.jdo.option.ConnectionURL. By default this location is ./metastore_db (see conf/hive-default.xml).

    Right now, in the default configuration, this metadata can only be seen by one user at a time.

    Metastore can be stored in any database that is supported by JPOX. The location and the type of the RDBMS can be controlled by the two variables javax.jdo.option.ConnectionURL and javax.jdo.option.ConnectionDriverName. Refer to JDO (or JPOX) documentation for more details on supported databases. The database schema is defined in JDO metadata annotations file package.jdo at src/contrib/hive/metastore/src/model.

    In the future, the metastore itself can be a standalone server.

    If you want to run the metastore as a network server so it can be accessed from multiple nodes, see Hive Using Derby in Server Mode.

       2.Hive DDL命令

      建表语句:

    CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name    -- (Note: TEMPORARY available in Hive 0.14.0 and later)
      [(col_name data_type [COMMENT col_comment], ... [constraint_specification])]
      [COMMENT table_comment]
      [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]  --分区
      [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] --分桶
      [SKEWED BY (col_name, col_name, ...)                  -- (Note: Available in Hive 0.10.0 and later)]
         ON ((col_value, col_value, ...), (col_value, col_value, ...), ...)
         [STORED AS DIRECTORIES]
      [                --存储格式
       [ROW FORMAT row_format]      
       [STORED AS file_format]
         | STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)]  -- (Note: Available in Hive 0.6.0 and later)
      ]
      [LOCATION hdfs_path]      --外部表指定存储路径
      [TBLPROPERTIES (property_name=property_value, ...)]   -- (Note: Available in Hive 0.6.0 and later)
      [AS select_statement];   -- (Note: Available in Hive 0.5.0 and later; not supported for external tables)
     
    CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name  --复制表
      LIKE existing_table_or_view_name
      [LOCATION hdfs_path];

      删除表:DROP TABLE [IF EXISTS] table_name [PURGE];

      截断表:TRUNCATE TABLE table_name [PARTITION partition_spec];

      查看表结构:

      DESCRIBE [EXTENDED|FORMATTED] 
      table_name[.col_name ( [.field_name] | [.'$elem$'] | [.'$key$'] | [.'$value$'] )* ];
       其他请查看官网DDL文档  
      3.Hive DML初步
      加载数据到Hive表:LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
      插入数据:
      INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement;
      INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;
      INSERT INTO TABLE tablename [PARTITION (partcol1[=val1], partcol2[=val2] ...)] VALUES ( value [, value ...] ) [, ( value [, value ...] )
      Hive数据导出
      INSERT OVERWRITE [LOCAL] DIRECTORY directory1
      [ROW FORMAT row_format] [STORED AS file_format] (Note: Only available starting with Hive 0.11.0)
      SELECT ... FROM ...
      举一个例子:导出hive数据到本地的/tmp/out目录,并制定分隔符是' ':
      
    insert overwrite local DIRECTORY '/tmp/out/'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '	'
    select 
      更新数据:UPDATE tablename SET column = value [, column = value ...] [WHERE expression]
      删除数据:DELETE FROM tablename [WHERE expression]
      查询数据:
    SELECT [ALL | DISTINCT] select_expr, select_expr, ...
      FROM table_reference
      [WHERE where_condition]
      [GROUP BY col_list]
      [ORDER BY col_list]
      [CLUSTER BY col_list
        | [DISTRIBUTE BY col_list] [SORT BY col_list]
      ]
     [LIMIT [offset,] rows]

      详细部分请参考官网DML部分(load/insert/update/delete/mergeimport/exportexplain plan

    Hive内置函数

    int

    year(string date)

    Return the year part of a date or a timestamp string: year("1970-01-01 00:00:00") = 1970, year("1970-01-01") = 1970

    string

    upper(string A)

    returns the string resulting from converting all characters of A to upper case, for example, upper('fOoBaR') results in 'FOOBAR'

    string

    ucase(string A)

    Same as upper

    string

    trim(string A)

    returns the string resulting from trimming spaces from both ends of A, for example, trim(' foobar ') results in 'foobar'

    string

    to_date(string timestamp)

    Return the date part of a timestamp string: to_date("1970-01-01 00:00:00") = "1970-01-01"

    string

    substr(string A, int start, int length)

    returns the substring of A starting from start position with the given length, for example, 
    substr('foobar', 4, 2) results in 'ba'

    string

    substr(string A, int start)

    returns the substring of A starting from start position till the end of string A. For example, substr('foobar', 4) results in 'bar'

    int

    size(Map<K.V>)

    returns the number of elements in the map type

    int

    size(Array<T>)

    returns the number of elements in the array type

    string

    rtrim(string A)

    returns the string resulting from trimming spaces from the end(right hand side) of A. For example, rtrim(' foobar ') results in ' foobar'

    BIGINT

    round(double a)

    returns the rounded BIGINT value of the double

    string

    regexp_replace(string A, string B, string C)

    returns the string resulting from replacing all substrings in B that match the Java regular expression syntax(See Java regular expressions syntax) with C. For example, regexp_replace('foobar', 'oo|ar', ) returns 'fb'

    double

    rand(), rand(int seed)

    returns a random number (that changes from row to row). Specifiying the seed will make sure the generated random number sequence is deterministic.

    int

    month(string date)

    Return the month part of a date or a timestamp string: month("1970-11-01 00:00:00") = 11, month("1970-11-01") = 11

    string

    ltrim(string A)

    returns the string resulting from trimming spaces from the beginning(left hand side) of A. For example, ltrim(' foobar ') results in 'foobar '

    string

    lower(string A)

    returns the string resulting from converting all characters of B to lower case, for example, lower('fOoBaR') results in 'foobar'

    string

    lcase(string A)

    Same as lower

    string

    get_json_object(string json_string, string path)

    Extract json object from a json string based on json path specified, and return json string of the extracted json object. It will return null if the input json string is invalid.

    string

    from_unixtime(int unixtime)

    convert the number of seconds from the UNIX epoch (1970-01-01 00:00:00 UTC) to a string representing the timestamp of that moment in the current system time zone in the format of "1970-01-01 00:00:00"

    BIGINT

    floor(double a)

    returns the maximum BIGINT value that is equal or less than the double

    int

    day(string date)

    Return the day part of a date or a timestamp string: day("1970-11-01 00:00:00") = 1, day("1970-11-01") = 1

    string

    concat(string A, string B,...)

    returns the string resulting from concatenating B after A. For example, concat('foo', 'bar') results in 'foobar'. This function accepts arbitrary number of arguments and return the concatenation of all of them.

    BIGINT

    ceil(double a)

    returns the minimum BIGINT value that is equal or greater than the double

     

    BIGINT

    count(*), count(expr), count(DISTINCT expr[, expr_.])

    count(*)—Returns the total number of retrieved rows, including rows containing NULL values; count(expr)—Returns the number of rows for which the supplied expression is non-NULL; count(DISTINCT expr[, expr])—Returns the number of rows for which the supplied expression(s) are unique and non-NULL.

    DOUBLE

    avg(col), avg(DISTINCT col)

    returns the average of the elements in the group or the average of the distinct values of the column in the group

    DOUBLE

    max(col)

    returns the maximum value of the column in the group

    DOUBLE

    min(col)

    returns the minimum value of the column in the group

    DOUBLE

    sum(col), sum(DISTINCT col)

    returns the sum of the elements in the group or the sum of the distinct values of the column in the group

     

    Built-in Aggregate Functions (UDAF)

    The following built-in aggregate functions are supported in Hive:

    Return Type

    Name(Signature)

    Description

    BIGINT

    count(*), count(expr), count(DISTINCT expr[, expr...])

    count(*) - Returns the total number of retrieved rows, including rows containing NULL values.

    count(expr) - Returns the number of rows for which the supplied expression is non-NULL.

    count(DISTINCT expr[, expr]) - Returns the number of rows for which the supplied expression(s) are unique and non-NULL. Execution of this can be optimized with hive.optimize.distinct.rewrite.

    DOUBLE

    sum(col), sum(DISTINCT col)

    Returns the sum of the elements in the group or the sum of the distinct values of the column in the group.

    DOUBLE

    avg(col), avg(DISTINCT col)

    Returns the average of the elements in the group or the average of the distinct values of the column in the group.

    DOUBLE

    min(col)

    Returns the minimum of the column in the group.

    DOUBLE

    max(col)

    Returns the maximum value of the column in the group.

    DOUBLE

    variance(col), var_pop(col)

    Returns the variance of a numeric column in the group.

    DOUBLE

    var_samp(col)

    Returns the unbiased sample variance of a numeric column in the group.

    DOUBLE

    stddev_pop(col)

    Returns the standard deviation of a numeric column in the group.

    DOUBLE

    stddev_samp(col)

    Returns the unbiased sample standard deviation of a numeric column in the group.

    DOUBLE

    covar_pop(col1, col2)

    Returns the population covariance of a pair of numeric columns in the group.

    DOUBLE

    covar_samp(col1, col2)

    Returns the sample covariance of a pair of a numeric columns in the group.

    DOUBLE

    corr(col1, col2)

    Returns the Pearson coefficient of correlation of a pair of a numeric columns in the group.

    DOUBLE

    percentile(BIGINT col, p)

    Returns the exact pth percentile of a column in the group (does not work with floating point types). p must be between 0 and 1. NOTE: A true percentile can only be computed for integer values. Use PERCENTILE_APPROX if your input is non-integral.

    array<double>

    percentile(BIGINT col, array(p1 [, p2]...))

    Returns the exact percentiles p1, p2, ... of a column in the group (does not work with floating point types). pimust be between 0 and 1. NOTE: A true percentile can only be computed for integer values. Use PERCENTILE_APPROX if your input is non-integral.

    DOUBLE

    percentile_approx(DOUBLE col, p [, B])

    Returns an approximate pth percentile of a numeric column (including floating point types) in the group. The B parameter controls approximation accuracy at the cost of memory. Higher values yield better approximations, and the default is 10,000. When the number of distinct values in col is smaller than B, this gives an exact percentile value.

    array<double>

    percentile_approx(DOUBLE col, array(p1 [, p2]...) [, B])

    Same as above, but accepts and returns an array of percentile values instead of a single one.

    double

    regr_avgx(independent, dependent)

    Equivalent to avg(dependent). As of Hive 2.2.0.

    double

    regr_avgy(independent, dependent)

    Equivalent to avg(independent). As of Hive 2.2.0.

    double

    regr_count(independent, dependent)

    Returns the number of non-null pairs used to fit the linear regression line. As of Hive 2.2.0.

    double

    regr_intercept(independent, dependent)

    Returns the y-intercept of the linear regression line, i.e. the value of b in the equation dependent = a * independent + b. As of Hive 2.2.0.

    double

    regr_r2(independent, dependent)

    Returns the coefficient of determination for the regression. As of Hive 2.2.0.

    double

    regr_slope(independent, dependent)

    Returns the slope of the linear regression line, i.e. the value of a in the equation dependent = a * independent + b. As of Hive 2.2.0.

    double

    regr_sxx(independent, dependent)

    Equivalent to regr_count(independent, dependent) * var_pop(dependent). As of Hive 2.2.0.

    double

    regr_sxy(independent, dependent)

    Equivalent to regr_count(independent, dependent) * covar_pop(independent, dependent). As of Hive 2.2.0.

    double regr_syy(independent, dependent)

    Equivalent to regr_count(independent, dependent) * var_pop(independent). As of Hive 2.2.0.

    array<struct {'x','y'}>

    histogram_numeric(col, b)

    Computes a histogram of a numeric column in the group using b non-uniformly spaced bins. The output is an array of size b of double-valued (x,y) coordinates that represent the bin centers and heights

    array

    collect_set(col)

    Returns a set of objects with duplicate elements eliminated.

    array

    collect_list(col)

    Returns a list of objects with duplicates. (As of Hive 0.13.0.)

    INTEGER ntile(INTEGER x)

    Divides an ordered partition into x groups called buckets and assigns a bucket number to each row in the partition. This allows easy calculation of tertiles, quartiles, deciles, percentiles and other common summary statistics. (As of Hive 0.11.0.)

     
     

    Built-in Table-Generating Functions (UDTF)

    Normal user-defined functions, such as concat(), take in a single input row and output a single output row. In contrast, table-generating functions transform a single input row to multiple output rows.

    Row-set columns types

    Name(Signature)

    Description

    T

    explode(ARRAY<T> a)

    Explodes an array to multiple rows. Returns a row-set with a single column (col), one row for each element from the array.

    Tkey,Tvalue

    explode(MAP<Tkey,Tvalue> m)

    Explodes a map to multiple rows. Returns a row-set with a two columns (key,value) , one row for each key-value pair from the input map. (As of Hive 0.8.0.).

    int,T posexplode(ARRAY<T> a) Explodes an array to multiple rows with additional positional column of int type (position of items in the original array, starting with 0). Returns a row-set with two columns (pos,val), one row for each element from the array.

    T1,...,Tn

    inline(ARRAY<STRUCT<f1:T1,...,fn:Tn>> a)

    Explodes an array of structs to multiple rows. Returns a row-set with N columns (N = number of top level elements in the struct), one row per struct from the array. (As of Hive 0.10.)

    T1,...,Tn/r stack(int r,TV1,...,Tn/r Vn) Breaks up n values V1,...,Vn into rows. Each row will have n/r columns. must be constant.
         

    string1,...,stringn

    json_tuple(string jsonStr,string k1,...,string kn)

    Takes JSON string and a set of n keys, and returns a tuple of n values. This is a more efficient version of the get_json_object UDF because it can get multiple keys with just one call.

    string 1,...,stringn

    parse_url_tuple(string urlStr,string p1,...,string pn)

    Takes URL string and a set of n URL parts, and returns a tuple of n values. This is similar to the parse_url() UDF but can extract multiple parts at once out of a URL. Valid part names are: HOST, PATH, QUERY, REF, PROTOCOL, AUTHORITY, FILE, USERINFO, QUERY:<KEY>.

     
     
    下面列举几个常用的操作:
    使用UDF:
      官网UDF文档
      UDF简记

    LateralView:行转列语句
    抽样:
      官网文档 
    Hive窗口分析函数:
      Analytics functions
    • RANK
    • ROW_NUMBER
    • DENSE_RANK
    • CUME_DIST
    • PERCENT_RANK
    • NTILE

      更多例子参考官网窗口分析函数文档

      
    举一个例子:
      
    select 1,tag_id
    from (
        select parse_json_array(get_json_object('{"data":[{"id":1082},{"id":1082},{"id":1082}]}','$.data'),'id') as ids
        from dual
    ) a
    lateral view explode(split(a.ids,'_')) s as tag_id
    ;
    
    <!--
    +------+---------+--+
    | _c0  | tag_id  |
    +------+---------+--+
    | 1    | 1082    |
    | 1    | 1082    |
    | 1    | 1082    |
    +------+---------+--+
    -->

      5.Hive与HBASE,MongoDB等整合

      官网文档:HBaseIntegration

      以下做简单步骤记录:

       1.添加mongodb整合包和驱动包:

    add jar /data/dmp/hive/lib/hive-mongo-1.0.0-jar-with-dependencies.jar;
    add jar /data/dmp/hive/lib/mongo-java-driver-3.2.2.jar;
    add jar /data/dmp/hive/lib/mongo-hadoop-hive-1.5.1.jar;
    add jar /data/dmp/hive/lib/mongo-hadoop-core-1.5.1.jar;
    

        2.创建hive外部表

    DROP TABLE IF EXISTS mongodb_table;
    CREATE EXTERNAL TABLE mongodb_table
    (
      id int
    )
    stored by 'com.mongodb.hadoop.hive.MongoStorageHandler'
    with serdeproperties(
      'mongo.columns.mapping'='{"id":"_id"}'
     )
    TBLPROPERTIES('mongo.uri'='mongodb://username:passwd@ip:port/db.table');
    

      这里遇到一个问题:

     If the username or password contains a colon (:) or an at-sign (@) then it must be urlencoded (state=,code=0)
    

      按照说明,把用户名或者密码的特殊字符用url编码就可以了

      6.Hive 优化与配置参数

    附:SQL执行顺序

    当一个查询语句同时出现了where,group by,having,order by的时候,执行顺序和编写顺序是: 
    1.执行where xx对全表数据做筛选,返回第1个结果集。 2.针对第1个结果集使用group by分组,返回第2个结果集。 
    3.针对第2个结果集中的每1组数据执行select xx,有几组就执行几次,返回第3个结果集。 

    4.针对第3个结集执行having xx进行筛选,返回第4个结果集。 5.针对第4个结果集排序。 

    7.Hive 复杂数据类型

     7.1 array

     7.2 map

     7.3 struct 

    Complex Type Constructors

    The following functions construct instances of complex types.

    Constructor Function

    Operands

    Description

    map

    (key1, value1, key2, value2, ...)

    Creates a map with the given key/value pairs.

    struct

    (val1, val2, val3, ...)

    Creates a struct with the given field values. Struct field names will be col1, col2, ....

    named_struct

    (name1, val1, name2, val2, ...)

    Creates a struct with the given field names and values. (As of Hive 0.8.0.)

    array

    (val1, val2, ...)

    Creates an array with the given elements.

    create_union

    (tag, val1, val2, ...)

    Creates a union type with the value that is being pointed to by the tag parameter.

     

    Operators on Complex Types

    The following operators provide mechanisms to access elements in Complex Types.

     

    Operator

    Operand types

    Description

    A[n]

    A is an Array and n is an int

    Returns the nth element in the array A. The first element has index 0. For example, if A is an array comprising of ['foo', 'bar'] then A[0] returns 'foo' and A[1] returns 'bar'.

    M[key]

    M is a Map<K, V> and key has type K

    Returns the value corresponding to the key in the map. For example, if M is a map comprising of {'f' -> 'foo', 'b' -> 'bar', 'all' -> 'foobar'} then M['all'] returns 'foobar'.

    S.x

    S is a struct

    Returns the x field of S. For example for the struct foobar {int foo, int bar}, foobar.foo returns the integer stored in the foo field of the struct.

     
     

    Collection Functions

    The following built-in collection functions are supported in Hive:

    Return Type

    Name(Signature)

    Description

    int

    size(Map<K.V>)

    Returns the number of elements in the map type.

    int

    size(Array<T>)

    Returns the number of elements in the array type.

    array<K>

    map_keys(Map<K.V>)

    Returns an unordered array containing the keys of the input map.

    array<V>

    map_values(Map<K.V>)

    Returns an unordered array containing the values of the input map.

    boolean

    array_contains(Array<T>, value)

    Returns TRUE if the array contains value.

    array<t>

    sort_array(Array<T>)

    Sorts the input array in ascending order according to the natural ordering of the array elements and returns it (as of version 0.9.0).

        
     

    8.Hive group by聚合增强

    8.1.grouping sets

    grouping sets子句都可以根据UNION连接的多个GROUP BY查询进行逻辑表示

    ```
    SELECT a,b,SUM(c)FROM tab1 GROUP BY a,b GROUPING SETS((a,b),a,b,())

    等价于

    SELECT a,b,SUM(c)FROM tab1 GROUP BY a,b
    union
    SELECT a,null,SUM(c)FROM tab1 GROUP BY a,null
    union
    SELECT null,b,SUM(c)FROM tab1 GROUP BY null,b
    union
    SELECT null,null,SUM(c)FROM tab1
    ```

    8.2.GROUPING__ID  

    注意是两个下划线相连,说明聚合结果是属于(grouping sets)哪一个子集的的。
    ```
    SELECT key, value, GROUPING__ID,count(*)
    FROM T1
    GROUP BY key, value
    GROUPING SETS((key,value),key,value)
    ;

    等价于

    SELECT key, value,1,count(*) -- 属于第1个GROUPING SETS子集,即(key,value)
    FROM T1
    GROUP BY key, value
    union
    SELECT key, NULL,2,count(*) -- 属于第2个GROUPING SETS子集,即key
    FROM T1
    GROUP BY key
    union
    SELECT NULL, value,3,count(*) -- 属于第3个GROUPING SETS子集,即value
    FROM T1
    GROUP BY value


    ```

    8.3 WITH CUBE

    CUBE是是group by字段的所有组合
    ```
    GROUP BY a,b,c WITH CUBE

    等同于

    GROUP BY a,b,c GROUPING SETS((a,b,c),(a,b),(b,c), (a,c),(a),(b),(c),()
    ```

    8.4 WITH ROLLUP

    ROLLUP子句与GROUP BY一起用于计算维度的层次结构级别的聚合。
    ```
    GROUP BY a,b,c,WITH ROLLUP

    等同于

    GROUP BY a,b,c GROUPING SETS((a,b,c),(a,b),(a),())。
    ```
    官网文档:
    https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C+Grouping+and+Rollup

  • 相关阅读:
    网络编程:心跳检测保证连接有效
    网络编程:端口复用
    网络编程:优雅的关闭
    网络编程:小包数据的处理
    网络编程:理解TCP中的“流”
    网络编程:TCP故障模式
    C语言实现高阶阶乘(1000的阶乘C语言实现)
    函数指针
    CCS(TI IDE)中英文切换
    命令行与C++
  • 原文地址:https://www.cnblogs.com/arachis/p/Hive.html
Copyright © 2020-2023  润新知