• 4. Median of Two Sorted Arrays


    二有序数组常用二分法, 要判断数组是否越界, 而数组的题常用递归, 擦半的方法, 比快排的方法, 少一个partition 遍历, 但是还是分成logn 层, Lintcode: Nuts & Bolts Problem

    There are two sorted arrays nums1 and nums2 of size m and n respectively.
    
    Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
    
    Example 1:
    nums1 = [1, 3]
    nums2 = [2]
    
    The median is 2.0
    Example 2:
    nums1 = [1, 2]
    nums2 = [3, 4]
    
    The median is (2 + 3)/2 = 2.5

    关键在于找到合适的比较位置, 准备擦出哪个数组的一半, 防止数组越界

    The key point of this problem is to ignore half part of A and B each step recursively by comparing the median of remaining A and B:

    if (aMid < bMid) Keep [aRight + bLeft]    
    else Keep [bRight + aLeft]
    

    As the following: time=O(log(m + n))

    public double findMedianSortedArrays(int[] A, int[] B) {
    	    int m = A.length, n = B.length;
    	    int l = (m + n + 1) / 2;
    	    int r = (m + n + 2) / 2;
    	    return (getkth(A, 0, B, 0, l) + getkth(A, 0, B, 0, r)) / 2.0;
    	}
    
    public double getkth(int[] A, int aStart, int[] B, int bStart, int k) {
    	if (aStart > A.length - 1) return B[bStart + k - 1];            
    	if (bStart > B.length - 1) return A[aStart + k - 1];                
    	if (k == 1) return Math.min(A[aStart], B[bStart]);
    	
    	int aMid = Integer.MAX_VALUE, bMid = Integer.MAX_VALUE;
    	if (aStart + k/2 - 1 < A.length) aMid = A[aStart + k/2 - 1]; 
    	if (bStart + k/2 - 1 < B.length) bMid = B[bStart + k/2 - 1];        
    	
    	if (aMid < bMid) 
    	    return getkth(A, aStart + k/2, B, bStart,       k - k/2);// Check: aRight + bLeft 
    	else 
    	    return getkth(A, aStart,       B, bStart + k/2, k - k/2);// Check: bRight + aLeft
    }
    

    这是递归, 按照递归的写法来写, 递归出口, 越界出口和正常出口, 递归输入元素的续写(分情况一直擦最小的k/2), 

    数组的递归, 常考虑其起始值和结束值. 比较值

     https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2471/Very-concise-O(log(min(MN)))-iterative-solution-with-detailed-explanation

  • 相关阅读:
    蓝桥杯-最大子阵
    蓝桥杯-四平方和问题
    蓝桥杯-生日蜡烛
    蓝桥杯-三羊献瑞
    蓝桥杯-李白喝酒
    使用SSH远程管理时本地文件被修改了
    Total Commander基本配置及使用(整理)
    Linux下自己和自己用各种方法进行文件的上传下载
    idea搭建springcloud微服务框架
    将tomcat注册成服务(windows)、linux安装svn、docker、nginx、zipkin以及rabbitMQ教程
  • 原文地址:https://www.cnblogs.com/apanda009/p/7262816.html
Copyright © 2020-2023  润新知