• [Leetcode] DP-- 474. Ones and Zeroes


    In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

    For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

    Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.

    Note:

    1. The given numbers of 0s and 1s will both not exceed 100
    2. The size of given string array won't exceed 600.

    Example 1:

    Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
    Output: 4
    
    Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”
    

    Example 2:

    Input: Array = {"10", "0", "1"}, m = 1, n = 1
    Output: 2
    
    Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".

    Solution:

     1. 1st naive method two layer iterations of every element in the array

       for i to n:  

            for j to n:          

                judge the element can be formed m zeros and n ones          

               and then decrease m and n

    2. 2nd use DP

       (1) Define the subproblem
           DP[i][j] represents the maximum number represented with i zeros and j ones
       (2) Find the recursion
             state function:    dp[i][j] = max(dp[i][j],  1 + dp[i-zeros][j-ones])
       (3) Get the base case
             initialize dp[i][j] = 0       
     
       
     1    dp = [[0] *(n+1) for _ in range(m+1)]
     2         
     3         #print ("ttt: ",dp)
     4         for s in strs:
     5             dic = Counter(s)
     6             zeros = dic["0"]
     7             ones = dic["1"]
     8 
     9             for i in range(m, zeros-1, -1):
    10                 for j in range(n, ones-1, -1):
    11                     dp[i][j] = max(dp[i][j],  1 + dp[i-zeros][j-ones])
    12                     #print ("ddd: ", i, j, dp[i][j])
    13         return dp[m][n]
     
  • 相关阅读:
    java基础_面试题笔记
    ACM-ICPC 2018 Xuzhou Online Contest题解
    覆盖点问题总结
    2018icpc沈阳网络赛题解(转发)
    树链剖分
    树状数组
    线段树板子
    sdoi2016生成魔咒
    洛谷3804
    大佬博文收集
  • 原文地址:https://www.cnblogs.com/anxin6699/p/7115603.html
Copyright © 2020-2023  润新知