• Python人脸识别检测(本地图片)


    # 安装OpenCV工具库
    # OpenCV是功能强大的第三方开源库,主要用于计算机视觉领域
    # 我们希望借助Python语言来实现一个面部识别的小功能模块
    # 下面是详细的解读,无需计算机视觉方面的理论功底,知道操作步骤即可

    '''
      安装OpenCV工具库
      在Windows cmd(Windows 命令行)中输入下面命令:
      pip install opencv_python -i https://pypi.tuna.tsinghua.edu.cn/simple
      我一般喜欢在https://pypi.tuna.tsinghua.edu.cn/simple(清华开源软件镜像网站)
      下载并安装第三方库,这样会大大提高安装的成功率,我比较推荐使用这种方式。 '''

    # 导入cv2工具库,是的,opencv的导入名称是cv2而不是opencv
    import cv2
    # 读取一张本地图片:调用cv2中的imread函数,参数为图片文件的路径,返回一个Image对象
    img = cv2.imread('D:/Lena.jpg')

    # 准备人脸识别引擎:这个部分我们暂且不聊,你就当作是调用一个实现人脸识别的应用程序了
    # 注意调用的格式,首先调用
    CascadeClassifier函数,顾名思义这个函数跟分类有关
    # 人脸识别就是机器学习领域中的分类任务
    # 参数由两部分构成,中间用加号连接起来
    # 第一部分是
    cv2.data.haarcascades,第二部分是一个xml文件名
    # xml文件名上自第一个连字符开始也有提示信息
    frontalface_default,表示人脸识别功能引擎
    # 后面还会讲到人眼识别和微笑识别,只需改变上述的提示信息即可调用识别引擎
    face_engine = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
    # 利用识别引擎来检测图片:调用识别引擎里的检测方法
    detectMultiScale
    # 参数中主要有三个部分:检测的对象(即本地图片)、检测的精度(建议1.3到2.5之间的浮点数)以及检测的范围(值越小范围越小)
    # 以上为函数里参数设置的基本描述,望大家自行调试
    # 返回一个可迭代对象

    faces = face_engine.detectMultiScale(img, 1.5, 4)
    # 画出人脸的矩形区域
    # 简单介绍一下可迭代对象的内容
    # faces是引擎检测出来的每个面部区域的有效信息
    # 包括坐标和宽度高度
    # x,y为左上角的坐标,w,h为面部区域的宽度和高度
    # 调用rectangle函数在图片上绘制矩形
    # rectangle里的参数:指定的图片、左上角坐标、右下角坐标、BGR颜色设置矩形的边框颜色、边框宽度的设置
    for (x, y, w, h) in faces:
      cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
    # 窗口显示图片:窗口名称、图片
    cv2.imshow('Face_recognition',img)
    # 安全退出窗口
    cv2.waitKey(0)

    最后得到这样一张图,这张照片是计算机视觉领域的入门级图片Lena图,相当于编程领域的“Hello World!”.

    大家不妨按照我的教程来试试!

    爱我没结果!
  • 相关阅读:
    Python连接MySQL数据库之pymysql模块使用
    线程
    进程
    网络编程
    面向对象进阶
    迭代器,生成器,装饰器
    函数的基础
    Andy's First Dictionary UVA
    Stripies POJ
    Soldier and Badges CodeForces
  • 原文地址:https://www.cnblogs.com/angoli/p/12985965.html
Copyright © 2020-2023  润新知