• Codeforces Round #275 (Div. 2)-B. Friends and Presents


    http://codeforces.com/contest/483/problem/B

    B. Friends and Presents
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend andcnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.

    In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.

    Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.

    A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.

    Input

    The only line contains four positive integers cnt1cnt2xy (1 ≤ cnt1, cnt2 < 109cnt1 + cnt2 ≤ 1092 ≤ x < y ≤ 3·104) — the numbers that are described in the statement. It is guaranteed that numbers xy are prime.

    Output

    Print a single integer — the answer to the problem.

    Sample test(s)
    input
    3 1 2 3
    output
    5
    input
    1 3 2 3
    output
    4
    Note

    In the first sample you give the set of numbers {1, 3, 5} to the first friend and the set of numbers {2} to the second friend. Note that if you give set {1, 3, 5} to the first friend, then we cannot give any of the numbers 135 to the second friend.

    In the second sample you give the set of numbers {3} to the first friend, and the set of numbers {1, 2, 4} to the second friend. Thus, the answer to the problem is 4.

     解题思路:据说是二分

     1 #include <stdio.h>
     2 
     3 #define ll long long
     4 
     5 ll imax(ll a, ll b){
     6     return a > b ? a : b;
     7 }
     8 
     9 int main(){
    10     ll cnt1, cnt2, x, y, left, right, mid;
    11     while(scanf("%I64d %I64d %I64d %I64d", &cnt1, &cnt2, &x, &y) != EOF){
    12         left = 0;
    13         right = 1e10;
    14         while(left + 1 < right){
    15             mid = (left + right)>>1;
    16             if((mid - mid / x >= cnt1) && (mid - mid / y - imax(0LL, cnt1 - mid / y + mid /(x * y)) >= cnt2)){
    17                 right = mid;
    18             }
    19             else{
    20                 left = mid;
    21             }
    22         }
    23         printf("%I64d ", right);
    24     }
    25     return 0;

    26 } 

  • 相关阅读:
    rpmdb open failed 的解决办法
    centos7 搭建vsftpd服务并锁定用户的家目录
    centos7 搭建samba服务
    python检测是否为数字
    python的random模块
    利用python编写一个简单的猜数字游戏
    在centos7中利用kvm创建虚拟机并设置为桥接模式
    支付宝提现
    冒泡排序(数组排序)
    全选获取对应值
  • 原文地址:https://www.cnblogs.com/angle-qqs/p/4063516.html
Copyright © 2020-2023  润新知