• macOS的OpenCL高性能计算



    随着深度学习、区块链的发展,人类对计算量的需求越来越高,在传统的计算模式下,压榨GPU的计算能力一直是重点。
    NV系列的显卡在这方面走的比较快,CUDA框架已经普及到了高性能计算的各个方面,比如Google的TensorFlow深度学习框架,默认内置了支持CUDA的GPU计算。
    AMD(ATI)及其它显卡在这方面似乎一直不够给力,在CUDA退出后仓促应对,使用了开放式的OPENCL架构,其中对CUDA应当说有不少的模仿。开放架构本来是一件好事,但OPENCL的发展一直不尽人意。而且为了兼容更多的显卡,程序中通用层导致的效率损失一直比较大。而实际上,现在的高性能显卡其实也就剩下了NV/AMD两家的竞争,这样基本没什么意义的性能损失不能不说让人纠结。所以在个人工作站和个人装机市场,通常的选择都是NV系列的显卡。
    mac电脑在这方面是比较尴尬的,当前的高端系列是MacPro垃圾桶。至少新款的一体机MacPro量产之前,垃圾桶仍然是mac家性能的扛鼎产品。然而其内置的显卡就是AMD,只能使用OPENCL通用计算框架了。

    下面是苹果官方给出的一个OPENCL的入门例子,结构很清晰,展示了使用显卡进行高性能计算的一般结构,我在注释中增加了中文的说明,相信可以让你更容易的上手OPENCL显卡计算。

    //
    // File:       hello.c
    //
    // Abstract:   A simple "Hello World" compute example showing basic usage of OpenCL which
    //             calculates the mathematical square (X[i] = pow(X[i],2)) for a buffer of
    //             floating point values.
    //             
    //
    // Version:    <1.0>
    //
    // Disclaimer: IMPORTANT:  This Apple software is supplied to you by Apple Inc. ("Apple")
    //             in consideration of your agreement to the following terms, and your use,
    //             installation, modification or redistribution of this Apple software
    //             constitutes acceptance of these terms.  If you do not agree with these
    //             terms, please do not use, install, modify or redistribute this Apple
    //             software.
    //
    //             In consideration of your agreement to abide by the following terms, and
    //             subject to these terms, Apple grants you a personal, non - exclusive
    //             license, under Apple's copyrights in this original Apple software ( the
    //             "Apple Software" ), to use, reproduce, modify and redistribute the Apple
    //             Software, with or without modifications, in source and / or binary forms;
    //             provided that if you redistribute the Apple Software in its entirety and
    //             without modifications, you must retain this notice and the following text
    //             and disclaimers in all such redistributions of the Apple Software. Neither
    //             the name, trademarks, service marks or logos of Apple Inc. may be used to
    //             endorse or promote products derived from the Apple Software without specific
    //             prior written permission from Apple.  Except as expressly stated in this
    //             notice, no other rights or licenses, express or implied, are granted by
    //             Apple herein, including but not limited to any patent rights that may be
    //             infringed by your derivative works or by other works in which the Apple
    //             Software may be incorporated.
    //
    //             The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO
    //             WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
    //             WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
    //             PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
    //             ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
    //
    //             IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
    //             CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    //             SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    //             INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
    //             AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
    //             UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
    //             OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    //
    // Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
    //
     
    ////////////////////////////////////////////////////////////////////////////////
     
    #include <fcntl.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <math.h>
    #include <unistd.h>
    #include <sys/types.h>
    #include <sys/stat.h>
    #include <OpenCL/opencl.h>
     
    ////////////////////////////////////////////////////////////////////////////////
     
    // Use a static data size for simplicity
    //
    #define DATA_SIZE (1024)
     
    ////////////////////////////////////////////////////////////////////////////////
     
    // Simple compute kernel which computes the square of an input array 
    // 这是OPENCL用于计算的内核部分源码,跟C相同的语法格式,通过编译后将发布到GPU设备
    //(或者将来专用的计算设备)上面去执行。因为显卡通常有几十、上百个内核,所以这部分
    // 需要设计成可并发的程序逻辑。
    // 
    const char *KernelSource = "
    " 
    "__kernel void square(                                                       
    " 
    "   __global float* input,                                              
    " 
    "   __global float* output,                                             
    " 
    "   const unsigned int count)                                           
    " 
    "{                                                                      
    " 
    // 并发逻辑主要是在下面这一行体现的,i的初始值获取当前内核的id(整数),根据id计算自己的那一小块任务
    "   int i = get_global_id(0);                                           
    " 
    "   if(i < count)                                                       
    " 
    "       output[i] = input[i] * input[i];                                
    " 
    "}                                                                      
    " 
    "
    ";
     
    ////////////////////////////////////////////////////////////////////////////////
     
    int main(int argc, char** argv)
    {
        int err;                            // error code returned from api calls
          
        float data[DATA_SIZE];              // original data set given to device
        float results[DATA_SIZE];           // results returned from device
        unsigned int correct;               // number of correct results returned
     
        size_t global;                      // global domain size for our calculation
        size_t local;                       // local domain size for our calculation
     
        cl_device_id device_id;             // compute device id 
        cl_context context;                 // compute context
        cl_command_queue commands;          // compute command queue
        cl_program program;                 // compute program
        cl_kernel kernel;                   // compute kernel
        
        cl_mem input;                       // device memory used for the input array
        cl_mem output;                      // device memory used for the output array
        
        // Fill our data set with random float values
        //
        int i = 0;
        unsigned int count = DATA_SIZE;
    	//随机产生一组浮点数据,用于给GPU进行计算
        for(i = 0; i < count; i++)
            data[i] = rand() / (float)RAND_MAX;
        
        // Connect to a compute device
        //
        int gpu = 1;
    	// 获取GPU设备,OPENCL的优势是可以使用CPU进行模拟,当然这种功能只是为了在没有GPU设备上进行调试
    	// 如果上面变量gpu=0的话,则使用CPU模拟
        err = clGetDeviceIDs(NULL, gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);
        if (err != CL_SUCCESS)
        {
            printf("Error: Failed to create a device group!
    ");
            return EXIT_FAILURE;
        }
      
        // Create a compute context 
        // 建立一个GPU计算的上下文环境,一组上下文环境保存一组相关的状态、内存等资源
        context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
        if (!context)
        {
            printf("Error: Failed to create a compute context!
    ");
            return EXIT_FAILURE;
        }
     
        // Create a command commands
        //使用获取到的GPU设备和上下文环境监理一个命令队列,其实就是给GPU的任务队列
        commands = clCreateCommandQueue(context, device_id, 0, &err);
        if (!commands)
        {
            printf("Error: Failed to create a command commands!
    ");
            return EXIT_FAILURE;
        }
     
        // Create the compute program from the source buffer
        //将内核程序的字符串加载到上下文环境
        program = clCreateProgramWithSource(context, 1, (const char **) & KernelSource, NULL, &err);
        if (!program)
        {
            printf("Error: Failed to create compute program!
    ");
            return EXIT_FAILURE;
        }
     
        // Build the program executable
        //根据所使用的设备,将程序编译成目标机器语言代码,跟通常的编译类似,
    	//内核程序的语法类错误信息都会在这里出现,所以一般尽可能打印完整从而帮助判断。
        err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
        if (err != CL_SUCCESS)
        {
            size_t len;
            char buffer[2048];
     
            printf("Error: Failed to build program executable!
    ");
            clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
            printf("%s
    ", buffer);
            exit(1);
        }
     
        // Create the compute kernel in the program we wish to run
        //使用内核程序的函数名建立一个计算内核
        kernel = clCreateKernel(program, "square", &err);
        if (!kernel || err != CL_SUCCESS)
        {
            printf("Error: Failed to create compute kernel!
    ");
            exit(1);
        }
     
        // Create the input and output arrays in device memory for our calculation
        // 建立GPU的输入缓冲区,注意READ_ONLY是对GPU而言的,这个缓冲区是建立在显卡显存中的
        input = clCreateBuffer(context,  CL_MEM_READ_ONLY,  sizeof(float) * count, NULL, NULL);
    	// 建立GPU的输出缓冲区,用于输出计算结果
        output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count, NULL, NULL);
        if (!input || !output)
        {
            printf("Error: Failed to allocate device memory!
    ");
            exit(1);
        }    
        
        // Write our data set into the input array in device memory 
        // 将CPU内存中的数据,写入到GPU显卡内存(内核函数的input部分)
        err = clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, sizeof(float) * count, data, 0, NULL, NULL);
        if (err != CL_SUCCESS)
        {
            printf("Error: Failed to write to source array!
    ");
            exit(1);
        }
     
        // Set the arguments to our compute kernel
        // 设定内核函数中的三个参数
        err = 0;
        err  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
        err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
        err |= clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
        if (err != CL_SUCCESS)
        {
            printf("Error: Failed to set kernel arguments! %d
    ", err);
            exit(1);
        }
     
        // Get the maximum work group size for executing the kernel on the device
        //获取GPU可用的计算核心数量
        err = clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL);
        if (err != CL_SUCCESS)
        {
            printf("Error: Failed to retrieve kernel work group info! %d
    ", err);
            exit(1);
        }
     
        // Execute the kernel over the entire range of our 1d input data set
        // using the maximum number of work group items for this device
        // 这是真正的计算部分,计算启动的时候采用队列的方式,因为一般计算任务的数量都会远远大于可用的内核数量,
    	// 在下面函数中,local是可用的内核数,global是要计算的数量,OPENCL会自动执行队列,完成所有的计算
    	// 所以在前面强调了,内核程序的设计要考虑、并尽力利用这种并发特征
        global = count;
        err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local, 0, NULL, NULL);
        if (err)
        {
            printf("Error: Failed to execute kernel!
    ");
            return EXIT_FAILURE;
        }
     
        // Wait for the command commands to get serviced before reading back results
        // 阻塞直到OPENCL完成所有的计算任务
        clFinish(commands);
     
        // Read back the results from the device to verify the output
        // 从GPU显存中把计算的结果复制到CPU内存
        err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(float) * count, results, 0, NULL, NULL );  
        if (err != CL_SUCCESS)
        {
            printf("Error: Failed to read output array! %d
    ", err);
            exit(1);
        }
        
        // Validate our results
        // 下面是使用CPU计算来验证OPENCL计算结果是否正确
        correct = 0;
        for(i = 0; i < count; i++)
        {
            if(results[i] == data[i] * data[i])
                correct++;
        }
        
        // Print a brief summary detailing the results
        // 显示验证的结果
        printf("Computed '%d/%d' correct values!
    ", correct, count);
        
        // Shutdown and cleanup
        // 清理各类对象及关闭OPENCL环境
        clReleaseMemObject(input);
        clReleaseMemObject(output);
        clReleaseProgram(program);
        clReleaseKernel(kernel);
        clReleaseCommandQueue(commands);
        clReleaseContext(context);
     
        return 0;
    }
    

    因为使用了mac的OPENCL框架,所以编译的时候要加上对框架的引用,如下所示:

    gcc -o hello hello.c -framework OpenCL
    
  • 相关阅读:
    进程的由来
    进程管理逻辑图
    OS的特征

    4.6 路由相关
    设计测试用例时应该考虑哪些方面,即不同的测试用例针对那些方面进行测试?
    如何测试一个纸杯?
    软件产品质量特性是什么?
    一个京东登录的安全漏洞
    文章、书阅读
  • 原文地址:https://www.cnblogs.com/andrewwang/p/8633469.html
Copyright © 2020-2023  润新知