一、基于密度的聚类算法的概述
二、DBSCAN算法的原理
1、基本概念
核心点。在半径Eps内含有超过MinPts数目的点
边界点。在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内
噪音点。既不是核心点也不是边界点的点
在这里有两个量,一个是半径Eps,另一个是指定的数目MinPts。
Eps邻域。简单来讲就是与点p的距离小于等于Eps的所有的点的集合,可以表示为。
直接密度可达。如果p在核心对象q的Eps邻域内,则称对象p从对象q出发是直接密度可达的。
密度可达。对于对象链:,是从关于Eps和MinPts直接密度可达的,则对象是从对象关于Eps和MinPts密度可达的。
2、算法流程
(流程)
三、实验仿真
(数据集1)
(数据集2)
数据集1相对比较简单。显然我们可以发现数据集1共有两个类,数据集2有四个类,下面我们通过DBSCAN算法实现数据点的聚类:
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% DBSCAN
clear all;
clc;
%% 导入数据集
% data = load('testData.txt');
data = load('testData_2.txt');
% 定义参数Eps和MinPts
MinPts = 5;
Eps = epsilon(data, MinPts);
[m,n] = size(data);%得到数据的大小
x = [(1:m)' data];
[m,n] = size(x);%重新计算数据集的大小
types = zeros(1,m);%用于区分核心点1,边界点0和噪音点-1
dealed = zeros(m,1);%用于判断该点是否处理过,0表示未处理过
dis = calDistance(x(:,2:n));
number = 1;%用于标记类
%% 对每一个点进行处理
for i = 1:m