横向对比分析Python解析XML的四种方式
在最初学习PYTHON的时候,只知道有DOM和SAX两种解析方法,但是其效率都不够理想,由于需要处理的文件数量太大,这两种方式耗时太高无法接受。
在网络搜索后发现,目前应用比较广泛,且效率相对较高的ElementTree也是一个比较多人推荐的算法,于是拿这个算法来实测对比,ElementTree也包括两种实现,一个是普通ElementTree(ET),一个是ElementTree.iterparse(ET_iter)。
本文将对DOM、SAX、ET、ET_iter四种方式进行横向对比,通过处理相同文件比较各个算法的用时来评估其效率。
程序中将四种解析方法均写为函数,在主程序中分别调用,来评估其解析效率。
解压后的XML文件内容示例为:
主程序函数调用部分代码为:
print("文件计数:%d/%d." % (gz_cnt,paser_num))
str_s,cnt = dom_parser(gz)
#str_s,cnt = sax_parser(gz)
#str_s,cnt = ET_parser(gz)
#str_s,cnt = ET_parser_iter(gz)
output.write(str_s)
vs_cnt = cnt
在最初的函数调用中函数返回两个值,但接收函数调用值时用两个变量分别调用,导致每个函数都要执行两次,之后修改为一次调用两个变量接收返回值,减少了无效调用。
1、DOM解析
函数定义代码:
def dom_parser(gz):
import gzip,cStringIO
import xml.dom.minidom
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已读入:%s.
解析中:" %
(os.path.abspath(gz)))
doc =
xml.dom.minidom.parseString(xm.read())
bulkPmMrDataFile = doc.documentElement
#读入子元素
enbs =
bulkPmMrDataFile.getElementsByTagName_r("eNB")
measurements =
enbs[0].getElementsByTagName_r("measurement")
objects =
measurements[0].getElementsByTagName_r("object")
#写入csv文件
for object in objects:
vs =
object.getElementsByTagName_r("v")
vs_cnt =
len(vs)
for v in
vs:
file_io.write(enbs[0].getAttribute("id") ' '
object.getAttribute("id") ' '
object.getAttribute("MmeUeS1apId") ' '
object.getAttribute("MmeGroupId") ' '
object.getAttribute("MmeCode") ' '
object.getAttribute("TimeStamp") ' ' v.childNodes[0].data '
')
#获取文本值
str_s = (((file_io.getvalue().replace('
','
')).replace(' ',',')).replace('T','
')).replace('NIL','')
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
………………………………………
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:107.077867,每秒处理行数:1660。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
由于DOM解析需要将整个文件读入内存,并建立树结构,其内存消耗和时间消耗都比较高,但其优点在于逻辑简单,不需要定义回调函数,便于实现。
2、SAX解析
函数定义代码:
def sax_parser(gz):
import os,gzip,cStringIO
from xml.parsers.expat import ParserCreate
#变量声明
d_eNB = {}
d_obj = {}
s = ''
global flag
flag = False
file_io = cStringIO.StringIO()
#Sax解析类
class DefaultSaxHandler(object):
#处理开始标签
def
start_element(self, name, attrs):
global d_eNB
global d_obj
global vs_cnt
if name == 'eNB':
d_eNB = attrs
elif name == 'object':
d_obj = attrs
elif name == 'v':
file_io.write(d_eNB['id'] ' ' d_obj['id'] ' ' d_obj['MmeUeS1apId']
' ' d_obj['MmeGroupId'] ' ' d_obj['MmeCode'] ' ' d_obj['TimeStamp']
' ')
vs_cnt = 1
else:
pass
#处理中间文本
def
char_data(self, text):
global d_eNB
global d_obj
global flag
if text[0:1].isnumeric():
file_io.write(text)
elif text[0:17] == 'MR.LteScPlrULQci1':
flag = True
#print(text,flag)
else:
pass
#处理结束标签
def
end_element(self, name):
global d_eNB
global d_obj
if name == 'v':
file_io.write('
')
else: