元类
1. 类也是对象
在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段。在Python中这一点仍然成立:
>>> class ObjectCreator(object): … pass … >>> my_object = ObjectCreator() >>> print my_object <__main__.ObjectCreator object at 0x8974f2c>
但是,Python中的类还远不止如此。类同样也是一种对象。是的,没错,就是对象。只要你使用关键字class,Python解释器在执行的时候就会创建一个对象。
下面的代码段:
>>> class ObjectCreator(object): … pass …
将在内存中创建一个对象,名字就是ObjectCreator。这个对象(类对象ObjectCreator)拥有创建对象(实例对象)的能力。但是,它的本质仍然是一个对象,于是乎你可以对它做如下的操作:
- 你可以将它赋值给一个变量
- 你可以拷贝它
- 你可以为它增加属性
- 你可以将它作为函数参数进行传递
下面是示例:
>>> print ObjectCreator # 你可以打印一个类,因为它其实也是一个对象 <class '__main__.ObjectCreator'> >>> def echo(o): … print o … >>> echo(ObjectCreator) # 你可以将类做为参数传给函数 <class '__main__.ObjectCreator'> >>> print hasattr(ObjectCreator, 'new_attribute') Fasle >>> ObjectCreator.new_attribute = 'foo' # 你可以为类增加属性 >>> print hasattr(ObjectCreator, 'new_attribute') True >>> print ObjectCreator.new_attribute foo >>> ObjectCreatorMirror = ObjectCreator # 你可以将类赋值给一个变量 >>> print ObjectCreatorMirror() <__main__.ObjectCreator object at 0x8997b4c>
2. 动态地创建类
因为类也是对象,你可以在运行时动态的创建它们,就像其他任何对象一样。首先,你可以在函数中创建类,使用class关键字即可。
>>> def choose_class(name): … if name == 'foo': … class Foo(object): … pass … return Foo # 返回的是类,不是类的实例 … else: … class Bar(object): … pass … return Bar … >>> MyClass = choose_class('foo') >>> print MyClass # 函数返回的是类,不是类的实例 <class '__main__'.Foo> >>> print MyClass() # 你可以通过这个类创建类实例,也就是对象 <__main__.Foo object at 0x89c6d4c>
但这还不够动态,因为你仍然需要自己编写整个类的代码。由于类也是对象,所以它们必须是通过什么东西来生成的才对。当你使用class关键字时,Python解释器自动创建这个对象。但就和Python中的大多数事情一样,Python仍然提供给你手动处理的方法。
还记得内建函数type吗?这个古老但强大的函数能够让你知道一个对象的类型是什么,就像这样:
>>> print type(1) #数值的类型 <type 'int'> >>> print type("1") #字符串的类型 <type 'str'> >>> print type(ObjectCreator()) #实例对象的类型 <class '__main__.ObjectCreator'> >>> print type(ObjectCreator) #类的类型 <type 'type'>
仔细观察上面的运行结果,发现使用type对ObjectCreator查看类型是,答案为type, 是不是有些惊讶。。。看下面
3. 使用type创建类
type还有一种完全不同的功能,动态的创建类。
type可以接受一个类的描述作为参数,然后返回一个类。(要知道,根据传入参数的不同,同一个函数拥有两种完全不同的用法是一件很傻的事情,但这在Python中是为了保持向后兼容性)
type可以像这样工作:
type(类名, 由父类名称组成的元组(针对继承的情况,可以为空),包含属性的字典(名称和值))
比如下面的代码:
In [2]: class Test: #定义了一个Test类 ...: pass ...: In [3]: Test() #创建了一个Test类的实例对象 Out[3]: <__main__.Test at 0x10d3f8438>
可以手动像这样创建:
Test2 = type("Test2",(),{}) #定了一个Test2类 In [5]: Test2() #创建了一个Test2类的实例对象 Out[5]: <__main__.Test2 at 0x10d406b38>
我们使用"Test2"作为类名,并且也可以把它当做一个变量来作为类的引用。类和变量是不同的,这里没有任何理由把事情弄的复杂。即type函数中第1个实参,也可以叫做其他的名字,这个名字表示类的名字
In [23]: MyDogClass = type('MyDog', (), {}) In [24]: print MyDogClass <class '__main__.MyDog'>
使用help来测试这2个类
In [10]: help(Test) #用help查看Test类 Help on class Test in module __main__: class Test(builtins.object) | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined)
In [8]: help(Test2) #用help查看Test2类 Help on class Test2 in module __main__: class Test2(builtins.object) | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined)
4. 使用type创建带有属性的类
type 接受一个字典来为类定义属性,因此
>>> Foo = type('Foo', (), {'bar':True})
可以翻译为:
>>> class Foo(object): … bar = True
并且可以将Foo当成一个普通的类一样使用:
>>> print Foo <class '__main__.Foo'> >>> print Foo.bar True >>> f = Foo() >>> print f <__main__.Foo object at 0x8a9b84c> >>> print f.bar True
当然,你可以向这个类继承,所以,如下的代码:
>>> class FooChild(Foo): … pass
就可以写成:
>>> FooChild = type('FooChild', (Foo,),{}) >>> print FooChild <class '__main__.FooChild'> >>> print FooChild.bar # bar属性是由Foo继承而来 True
注意:
- type的第2个参数,元组中是父类的名字,而不是字符串
- 添加的属性是类属性,并不是实例属性
5. 使用type创建带有方法的类
最终你会希望为你的类增加方法。只需要定义一个有着恰当签名的函数并将其作为属性赋值就可以了。
添加实例方法
In [46]: def echo_bar(self): #定义了一个普通的函数 ...: print(self.bar) ...: In [47]: FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar}) #让FooChild类中的echo_bar属性,指向了上面定义的函数 In [48]: hasattr(Foo, 'echo_bar') #判断Foo类中,是否有echo_bar这个属性 Out[48]: False In [49]: In [49]: hasattr(FooChild, 'echo_bar') #判断FooChild类中,是否有echo_bar这个属性 Out[49]: True In [50]: my_foo = FooChild() In [51]: my_foo.echo_bar() True
添加静态方法
In [36]: @staticmethod ...: def testStatic(): ...: print("static method ....") ...: In [37]: Foochild = type('Foochild', (Foo,), {"echo_bar":echo_bar, "testStatic": ...: testStatic}) In [38]: fooclid = Foochild() In [39]: fooclid.testStatic Out[39]: <function __main__.testStatic> In [40]: fooclid.testStatic() static method .... In [41]: fooclid.echo_bar() True
添加类方法
In [42]: @classmethod ...: def testClass(cls): ...: print(cls.bar) ...: In [43]: In [43]: Foochild = type('Foochild', (Foo,), {"echo_bar":echo_bar, "testStatic": ...: testStatic, "testClass":testClass}) In [44]: In [44]: fooclid = Foochild() In [45]: fooclid.testClass() True
你可以看到,在Python中,类也是对象,你可以动态的创建类。这就是当你使用关键字class时Python在幕后做的事情,而这就是通过元类来实现的。
6. 到底什么是元类(终于到主题了)
元类就是用来创建类的“东西”。你创建类就是为了创建类的实例对象,不是吗?但是我们已经学习到了Python中的类也是对象。
元类就是用来创建这些类(对象)的,元类就是类的类,你可以这样理解为:
MyClass = MetaClass() #使用元类创建出一个对象,这个对象称为“类” MyObject = MyClass() #使用“类”来创建出实例对象
你已经看到了type可以让你像这样做:
MyClass = type('MyClass', (), {})
这是因为函数type实际上是一个元类。type就是Python在背后用来创建所有类的元类。现在你想知道那为什么type会全部采用小写形式而不是Type呢?好吧,我猜这是为了和str保持一致性,str是用来创建字符串对象的类,而int是用来创建整数对象的类。type就是创建类对象的类。你可以通过检查__class__属性来看到这一点。Python中所有的东西,注意,我是指所有的东西——都是对象。这包括整数、字符串、函数以及类。它们全部都是对象,而且它们都是从一个类创建而来,这个类就是type。
>>> age = 35 >>> age.__class__ <type 'int'> >>> name = 'bob' >>> name.__class__ <type 'str'> >>> def foo(): pass >>>foo.__class__ <type 'function'> >>> class Bar(object): pass >>> b = Bar() >>> b.__class__ <class '__main__.Bar'>
现在,对于任何一个__class__的__class__属性又是什么呢?
>>> a.__class__.__class__ <type 'type'> >>> age.__class__.__class__ <type 'type'> >>> foo.__class__.__class__ <type 'type'> >>> b.__class__.__class__ <type 'type'>
因此,元类就是创建类这种对象的东西。type就是Python的内建元类,当然了,你也可以创建自己的元类。
7. __metaclass__属性
你可以在定义一个类的时候为其添加__metaclass__属性。
class Foo(object): __metaclass__ = something… ...省略...
如果你这么做了,Python就会用元类来创建类Foo。小心点,这里面有些技巧。你首先写下class Foo(object),但是类Foo还没有在内存中创建。Python会在类的定义中寻找__metaclass__属性,如果找到了,Python就会用它来创建类Foo,如果没有找到,就会用内建的type来创建这个类。把下面这段话反复读几次。当你写如下代码时 :
class Foo(Bar): pass
Python做了如下的操作:
- Foo中有__metaclass__这个属性吗?如果是,Python会通过__metaclass__创建一个名字为Foo的类(对象)
- 如果Python没有找到__metaclass__,它会继续在Bar(父类)中寻找__metaclass__属性,并尝试做和前面同样的操作。
- 如果Python在任何父类中都找不到__metaclass__,它就会在模块层次中去寻找__metaclass__,并尝试做同样的操作。
- 如果还是找不到__metaclass__,Python就会用内置的type来创建这个类对象。
现在的问题就是,你可以在__metaclass__中放置些什么代码呢?答案就是:可以创建一个类的东西。那么什么可以用来创建一个类呢?type,或者任何使用到type或者子类化type的东东都可以。
8. 自定义元类
元类的主要目的就是为了当创建类时能够自动地改变类。通常,你会为API做这样的事情,你希望可以创建符合当前上下文的类。
假想一个很傻的例子,你决定在你的模块里所有的类的属性都应该是大写形式。有好几种方法可以办到,但其中一种就是通过在模块级别设定__metaclass__。采用这种方法,这个模块中的所有类都会通过这个元类来创建,我们只需要告诉元类把所有的属性都改成大写形式就万事大吉了。
幸运的是,__metaclass__实际上可以被任意调用,它并不需要是一个正式的类。所以,我们这里就先以一个简单的函数作为例子开始。
python2中
#-*- coding:utf-8 -*- def upper_attr(future_class_name, future_class_parents, future_class_attr): #遍历属性字典,把不是__开头的属性名字变为大写 newAttr = {} for name,value in future_class_attr.items(): if not name.startswith("__"): newAttr[name.upper()] = value #调用type来创建一个类 return type(future_class_name, future_class_parents, newAttr) class Foo(object): __metaclass__ = upper_attr #设置Foo类的元类为upper_attr bar = 'bip' print(hasattr(Foo, 'bar')) print(hasattr(Foo, 'BAR')) f = Foo() print(f.BAR)
python3中
#-*- coding:utf-8 -*- def upper_attr(future_class_name, future_class_parents, future_class_attr): #遍历属性字典,把不是__开头的属性名字变为大写 newAttr = {} for name,value in future_class_attr.items(): if not name.startswith("__"): newAttr[name.upper()] = value #调用type来创建一个类 return type(future_class_name, future_class_parents, newAttr) class Foo(object, metaclass=upper_attr): bar = 'bip' print(hasattr(Foo, 'bar')) print(hasattr(Foo, 'BAR')) f = Foo() print(f.BAR)
现在让我们再做一次,这一次用一个真正的class来当做元类。
#coding=utf-8 class UpperAttrMetaClass(type): # __new__ 是在__init__之前被调用的特殊方法 # __new__是用来创建对象并返回之的方法 # 而__init__只是用来将传入的参数初始化给对象 # 你很少用到__new__,除非你希望能够控制对象的创建 # 这里,创建的对象是类,我们希望能够自定义它,所以我们这里改写__new__ # 如果你希望的话,你也可以在__init__中做些事情 # 还有一些高级的用法会涉及到改写__call__特殊方法,但是我们这里不用 def __new__(cls, future_class_name, future_class_parents, future_class_attr): #遍历属性字典,把不是__开头的属性名字变为大写 newAttr = {} for name,value in future_class_attr.items(): if not name.startswith("__"): newAttr[name.upper()] = value # 方法1:通过'type'来做类对象的创建 # return type(future_class_name, future_class_parents, newAttr) # 方法2:复用type.__new__方法 # 这就是基本的OOP编程,没什么魔法 # return type.__new__(cls, future_class_name, future_class_parents, newAttr) # 方法3:使用super方法 return super(UpperAttrMetaClass, cls).__new__(cls, future_class_name, future_class_parents, newAttr) #python2的用法 class Foo(object): __metaclass__ = UpperAttrMetaClass bar = 'bip' # python3的用法 # class Foo(object, metaclass = UpperAttrMetaClass): # bar = 'bip' print(hasattr(Foo, 'bar')) # 输出: False print(hasattr(Foo, 'BAR')) # 输出:True f = Foo() print(f.BAR) # 输出:'bip'
就是这样,除此之外,关于元类真的没有别的可说的了。但就元类本身而言,它们其实是很简单的:
- 拦截类的创建
- 修改类
- 返回修改之后的类
究竟为什么要使用元类?
现在回到我们的大主题上来,究竟是为什么你会去使用这样一种容易出错且晦涩的特性?好吧,一般来说,你根本就用不上它:
“元类就是深度的魔法,99%的用户应该根本不必为此操心。如果你想搞清楚究竟是否需要用到元类,那么你就不需要它。那些实际用到元类的人都非常清楚地知道他们需要做什么,而且根本不需要解释为什么要用元类。” —— Python界的领袖 Tim Peters
python是动态语言
1. 动态语言的定义
动态编程语言
是 高级程序设计语言
的一个类别,在计算机科学领域已被广泛应用。它是一类 在运行时可以改变其结构
的语言 :例如新的函数、对象、甚至代码可以被引进,已有的函数可以被删除或是其他结构上的变化。动态语言目前非常具有活力。例如JavaScript便是一个动态语言,除此之外如 PHP 、 Ruby 、 Python 等也都属于动态语言,而 C 、 C++ 等语言则不属于动态语言。----来自 维基百科
2. 运行的过程中给对象绑定(添加)属性
>>> class Person(object): def __init__(self, name = None, age = None): self.name = name self.age = age >>> P = Person("小明", "24") >>>
在这里,我们定义了1个类Person,在这个类里,定义了两个初始属性name和age,但是人还有性别啊!如果这个类不是你写的是不是你会尝试访问性别这个属性呢?
>>> P.sex = "male" >>> P.sex 'male' >>>
这时候就发现问题了,我们定义的类里面没有sex这个属性啊!怎么回事呢? 这就是动态语言的魅力和坑! 这里 实际上就是 动态给实例绑定属性!
3. 运行的过程中给类绑定(添加)属性
>>> P1 = Person("小丽", "25") >>> P1.sex Traceback (most recent call last): File "<pyshell#21>", line 1, in <module> P1.sex AttributeError: Person instance has no attribute 'sex' >>>
我们尝试打印P1.sex,发现报错,P1没有sex这个属性!---- 给P这个实例绑定属性对P1这个实例不起作用! 那我们要给所有的Person的实例加上 sex属性怎么办呢? 答案就是直接给Person绑定属性!
>>>> Person.sex = None #给类Person添加一个属性 >>> P1 = Person("小丽", "25") >>> print(P1.sex) #如果P1这个实例对象中没有sex属性的话,那么就会访问它的类属性 None #可以看到没有出现异常 >>>
4. 运行的过程中给类绑定(添加)方法
我们直接给Person绑定sex这个属性,重新实例化P1后,P1就有sex这个属性了! 那么function呢?怎么绑定?
>>> class Person(object): def __init__(self, name = None, age = None): self.name = name self.age = age def eat(self): print("eat food") >>> def run(self, speed): print("%s在移动, 速度是 %d km/h"%(self.name, speed)) >>> P = Person("老王", 24) >>> P.eat() eat food >>> >>> P.run() Traceback (most recent call last): File "<pyshell#5>", line 1, in <module> P.run() AttributeError: Person instance has no attribute 'run' >>> >>> >>> import types >>> P.run = types.MethodType(run, P) >>> P.run(180) 老王在移动,速度是 180 km/h
既然给类添加方法,是使用类名.方法名 = xxxx
,那么给对象添加一个方法也是类似的对象.方法名 = xxxx
完整的代码如下:
import types #定义了一个类 class Person(object): num = 0 def __init__(self, name = None, age = None): self.name = name self.age = age def eat(self): print("eat food") #定义一个实例方法 def run(self, speed): print("%s在移动, 速度是 %d km/h"%(self.name, speed)) #定义一个类方法 @classmethod def testClass(cls): cls.num = 100 #定义一个静态方法 @staticmethod def testStatic(): print("---static method----") #创建一个实例对象 P = Person("老王", 24) #调用在class中的方法 P.eat() #给这个对象添加实例方法 P.run = types.MethodType(run, P) #调用实例方法 P.run(180) #给Person类绑定类方法 Person.testClass = testClass #调用类方法 print(Person.num) Person.testClass() print(Person.num) #给Person类绑定静态方法 Person.testStatic = testStatic #调用静态方法 Person.testStatic()
5. 运行的过程中删除属性、方法
删除的方法:
- del 对象.属性名
- delattr(对象, "属性名")
通过以上例子可以得出一个结论:相对于动态语言,静态语言具有严谨性!所以,玩动态语言的时候,小心动态的坑!
那么怎么避免这种情况呢? 请使用__slots__,
__slots__
现在我们终于明白了,动态语言与静态语言的不同
动态语言:可以在运行的过程中,修改代码
静态语言:编译时已经确定好代码,运行过程中不能修改
如果我们想要限制实例的属性怎么办?比如,只允许对Person实例添加name和age属性。
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:
>>> class Person(object): __slots__ = ("name", "age") >>> P = Person() >>> P.name = "老王" >>> P.age = 20 >>> P.score = 100 Traceback (most recent call last): File "<pyshell#3>", line 1, in <module> AttributeError: Person instance has no attribute 'score' >>>
注意:
- 使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的
In [67]: class Test(Person): ...: pass ...: In [68]: t = Test() In [69]: t.score = 100
生成器
1. 什么是生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
2. 创建生成器方法1
要创建一个生成器,有很多种方法。第一种方法很简单,只要把一个列表生成式的 [ ] 改成 ( )
In [15]: L = [ x*2 for x in range(5)] In [16]: L Out[16]: [0, 2, 4, 6, 8] In [17]: G = ( x*2 for x in range(5)) In [18]: G Out[18]: <generator object <genexpr> at 0x7f626c132db0> In [19]:
创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出L的每一个元素,但我们怎么打印出G的每一个元素呢?如果要一个一个打印出来,可以通过 next() 函数获得生成器的下一个返回值:
In [19]: next(G) Out[19]: 0 In [20]: next(G) Out[20]: 2 In [21]: next(G) Out[21]: 4 In [22]: next(G) Out[22]: 6 In [23]: next(G) Out[23]: 8 In [24]: next(G) --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-24-380e167d6934> in <module>() ----> 1 next(G) StopIteration: In [25]:
In [26]: G = ( x*2 for x in range(5)) In [27]: for x in G: ....: print(x) ....: 0 2 4 6 8 In [28]:
生成器保存的是算法,每次调用 next(G) ,就计算出 G 的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出 StopIteration 的异常。当然,这种不断调用 next() 实在是太变态了,正确的方法是使用 for 循环,因为生成器也是可迭代对象。所以,我们创建了一个生成器后,基本上永远不会调用 next() ,而是通过 for 循环来迭代它,并且不需要关心 StopIteration 异常。
3. 创建生成器方法2
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的 for 循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
In [28]: def fib(times): ....: n = 0 ....: a,b = 0,1 ....: while n<times: ....: print(b) ....: a,b = b,a+b ....: n+=1 ....: return 'done' ....: In [29]: fib(5) 1 1 2 3 5 Out[29]: 'done'
仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:
In [30]: def fib(times): ....: n = 0 ....: a,b = 0,1 ....: while n<times: ....: yield b ....: a,b = b,a+b ....: n+=1 ....: return 'done' ....: In [31]: F = fib(5) In [32]: next(F) Out[32]: 1 In [33]: next(F) Out[33]: 1 In [34]: next(F) Out[34]: 2 In [35]: next(F) Out[35]: 3 In [36]: next(F) Out[36]: 5 In [37]: next(F) --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-37-8c2b02b4361a> in <module>() ----> 1 next(F) StopIteration: done
在上面fib 的例子,我们在循环过程中不断调用 yield ,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用 next() 来获取下一个返回值,而是直接使用 for 循环来迭代:
In [38]: for n in fib(5): ....: print(n) ....: 1 1 2 3 5 In [39]:
但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:
In [39]: g = fib(5) In [40]: while True: ....: try: ....: x = next(g) ....: print("value:%d"%x) ....: except StopIteration as e: ....: print("生成器返回值:%s"%e.value) ....: break ....: value:1 value:1 value:2 value:3 value:5 生成器返回值:done In [41]:
4. send
例子:执行到yield时,gen函数作用暂时保存,返回i的值;temp接收下次c.send("python"),send发送过来的值,c.next()等价c.send(None)
In [10]: def gen(): ....: i = 0 ....: while i<5: ....: temp = yield i ....: print(temp) ....: i+=1 ....:
使用next函数
In [11]: f = gen() In [12]: next(f) Out[12]: 0 In [13]: next(f) None Out[13]: 1 In [14]: next(f) None Out[14]: 2 In [15]: next(f) None Out[15]: 3 In [16]: next(f) None Out[16]: 4 In [17]: next(f) None --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-17-468f0afdf1b9> in <module>() ----> 1 next(f) StopIteration:
使用__next__()
方法
In [18]: f = gen() In [19]: f.__next__() Out[19]: 0 In [20]: f.__next__() None Out[20]: 1 In [21]: f.__next__() None Out[21]: 2 In [22]: f.__next__() None Out[22]: 3 In [23]: f.__next__() None Out[23]: 4 In [24]: f.__next__() None --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-24-39ec527346a9> in <module>() ----> 1 f.__next__() StopIteration:
使用send
In [43]: f = gen() In [44]: f.__next__() Out[44]: 0 In [45]: f.send('haha') haha Out[45]: 1 In [46]: f.__next__() None Out[46]: 2 In [47]: f.send('haha') haha Out[47]: 3 In [48]:
总结
生成器是这样一个函数,它记住上一次返回时在函数体中的位置。对生成器函数的第二次(或第 n 次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变。
生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。
生成器的特点:
- 节约内存
- 迭代到下一次的调用时,所使用的参数都是第一次所保留下的,即是说,在整个所有函数调用的参数都是第一次所调用时保留的,而不是新创建的
迭代器
迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
1. 可迭代对象
以直接作用于 for 循环的数据类型有以下几种:
一类是集合数据类型,如 list 、 tuple 、 dict 、 set 、 str 等;
一类是 generator ,包括生成器和带 yield 的generator function。
这些可以直接作用于 for 循环的对象统称为可迭代对象: Iterable 。
2. 判断是否可以迭代
可以使用 isinstance() 判断一个对象是否是 Iterable 对象:
In [50]: from collections import Iterable In [51]: isinstance([], Iterable) Out[51]: True In [52]: isinstance({}, Iterable) Out[52]: True In [53]: isinstance('abc', Iterable) Out[53]: True In [54]: isinstance((x for x in range(10)), Iterable) Out[54]: True In [55]: isinstance(100, Iterable) Out[55]: False
而生成器不但可以作用于 for 循环,还可以被 next() 函数不断调用并返回下一个值,直到最后抛出 StopIteration 错误表示无法继续返回下一个值了。
3.迭代器
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用 isinstance() 判断一个对象是否是 Iterator 对象:
In [56]: from collections import Iterator In [57]: isinstance((x for x in range(10)), Iterator) Out[57]: True In [58]: isinstance([], Iterator) Out[58]: False In [59]: isinstance({}, Iterator) Out[59]: False In [60]: isinstance('abc', Iterator) Out[60]: False In [61]: isinstance(100, Iterator) Out[61]: False
4.iter()函数
生成器都是 Iterator 对象,但 list 、 dict 、 str 虽然是 Iterable ,却不是 Iterator 。
把 list 、 dict 、 str 等 Iterable 变成 Iterator 可以使用 iter() 函数:
In [62]: isinstance(iter([]), Iterator) Out[62]: True In [63]: isinstance(iter('abc'), Iterator) Out[63]: True
总结
- 凡是可作用于 for 循环的对象都是 Iterable 类型;
- 凡是可作用于 next() 函数的对象都是 Iterator 类型
- 集合数据类型如 list 、 dict 、 str 等是 Iterable 但不是 Iterator ,不过可以通过 iter() 函数获得一个 Iterator 对象。
闭包
1. 函数引用
def test1(): print("--- in test1 func----") #调用函数 test1() #引用函数 ret = test1 print(id(ret)) print(id(test1)) #通过引用调用函数 ret()
运行结果:
--- in test1 func---- 140212571149040 140212571149040 --- in test1 func----
2. 什么是闭包
#定义一个函数 def test(number): #在函数内部再定义一个函数,并且这个函数用到了外边函数的变量,那么将这个函数以及用到的一些变量称之为闭包 def test_in(number_in): print("in test_in 函数, number_in is %d"%number_in) return number+number_in #其实这里返回的就是闭包的结果 return test_in #给test函数赋值,这个20就是给参数number ret = test(20) #注意这里的100其实给参数number_in print(ret(100)) #注意这里的200其实给参数number_in print(ret(200))
运行结果:
in test_in 函数, number_in is 100 120 in test_in 函数, number_in is 200 220
3. 闭包再理解
内部函数对外部函数作用域里变量的引用(非全局变量),则称内部函数为闭包。
# closure.py def counter(start=0): count=[start] def incr(): count[0] += 1 return count[0] return incr
启动python解释器
>>>import closeure >>>c1=closeure.counter(5) >>>print(c1()) 6 >>>print(c1()) 7 >>>c2=closeure.counter(100) >>>print(c2()) 101 >>>print(c2()) 102
nonlocal访问外部函数的局部变量(python3)
def counter(start=0): def incr(): nonlocal start start += 1 return start return incr c1 = counter(5) print(c1()) print(c1()) c2 = counter(50) print(c2()) print(c2()) print(c1()) print(c1()) print(c2()) print(c2())
4. 看一个闭包的实际例子:
def line_conf(a, b): def line(x): return a*x + b return line line1 = line_conf(1, 1) line2 = line_conf(4, 5) print(line1(5)) print(line2(5))
这个例子中,函数line与变量a,b构成闭包。在创建闭包的时候,我们通过line_conf的参数a,b说明了这两个变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。
如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。
闭包思考:
1.闭包似优化了变量,原来需要类对象完成的工作,闭包也可以完成
2.由于闭包引用了外部函数的局部变量,则外部函数的局部变量没有及时释放,消耗内存
装饰器
装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题,但对于好多初次接触这个知识的人来讲,这个功能有点绕,自学时直接绕过去了,然后面试问到了就挂了,因为装饰器是程序开发的基础知识,这个都不会,别跟人家说你会Python, 看了下面的文章,保证你学会装饰器。
1、先明白这段代码
#### 第一波 #### def foo(): print('foo') foo #表示是函数 foo() #表示执行foo函数 #### 第二波 #### def foo(): print('foo') foo = lambda x: x + 1 foo() # 执行下面的lambda表达式,而不再是原来的foo函数,因为foo这个名字被重新指向了另外一个匿名函数
2、需求来了
初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:
############### 基础平台提供的功能如下 ############### def f1(): print('f1') def f2(): print('f2') def f3(): print('f3') def f4(): print('f4') ############### 业务部门A 调用基础平台提供的功能 ############### f1() f2() f3() f4() ############### 业务部门B 调用基础平台提供的功能 ############### f1() f2() f3() f4()
目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。
老大把工作交给 Low B,他是这么做的:
跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。太棒了,有充足的时间泡妹子...
当天Low B 被开除了…
老大把工作交给 Low BB,他是这么做的:
############### 基础平台提供的功能如下 ############### def f1(): # 验证1 # 验证2 # 验证3 print('f1') def f2(): # 验证1 # 验证2 # 验证3 print('f2') def f3(): # 验证1 # 验证2 # 验证3 print('f3') def f4(): # 验证1 # 验证2 # 验证3 print('f4') ############### 业务部门不变 ############### ### 业务部门A 调用基础平台提供的功能### f1() f2() f3() f4() ### 业务部门B 调用基础平台提供的功能 ### f1() f2() f3() f4()
过了一周 Low BB 被开除了…
老大把工作交给 Low BBB,他是这么做的:
只对基础平台的代码进行重构,其他业务部门无需做任何修改
############### 基础平台提供的功能如下 ############### def check_login(): # 验证1 # 验证2 # 验证3 pass def f1(): check_login() print('f1') def f2(): check_login() print('f2') def f3(): check_login() print('f3') def f4(): check_login() print('f4')
老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:
老大说:
写代码要遵循开放封闭
原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:
- 封闭:已实现的功能代码块
- 开放:对扩展开发
如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:
def w1(func): def inner(): # 验证1 # 验证2 # 验证3 func() return inner @w1 def f1(): print('f1') @w1 def f2(): print('f2') @w1 def f3(): print('f3') @w1 def f4(): print('f4')
对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。
Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?
老大正要生气,突然Low BBB的手机掉到地上,恰巧屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,决定和Low BBB交个好朋友。
详细的开始讲解了:
单独以f1为例:
def w1(func): def inner(): # 验证1 # 验证2 # 验证3 func() return inner @w1 def f1(): print('f1')
python解释器就会从上到下解释代码,步骤如下:
- def w1(func): ==>将w1函数加载到内存
- @w1
没错, 从表面上看解释器仅仅会解释这两句代码,因为函数在 没有被调用之前其内部代码不会被执行。
从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章, @函数名 是python的一种语法糖。
上例@w1内部会执行一下操作:
执行w1函数
执行w1函数 ,并将 @w1 下面的函数作为w1函数的参数,即:@w1 等价于 w1(f1) 所以,内部就会去执行:
def inner(): #验证 1 #验证 2 #验证 3 f1() # func是参数,此时 func 等于 f1 return inner# 返回的 inner,inner代表的是函数,非执行函数 ,其实就是将原来的 f1 函数塞进另外一个函数中
w1的返回值
将执行完的w1函数返回值 赋值 给@w1下面的函数的函数名f1 即将w1的返回值再重新赋值给 f1,即:
新f1 = def inner(): #验证 1 #验证 2 #验证 3 原来f1() return inner
所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在新f1 函数内部先执行验证,再执行原来的f1函数,然后将原来f1 函数的返回值返回给了业务调用者。
如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着
Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!
3. 再议装饰器
#定义函数:完成包裹数据 def makeBold(fn): def wrapped(): return "<b>" + fn() + "</b>" return wrapped #定义函数:完成包裹数据 def makeItalic(fn): def wrapped(): return "<i>" + fn() + "</i>" return wrapped @makeBold def test1(): return "hello world-1" @makeItalic def test2(): return "hello world-2" @makeBold @makeItalic def test3(): return "hello world-3" print(test1())) print(test2())) print(test3()))
运行结果:
<b>hello world-1</b> <i>hello world-2</i> <b><i>hello world-3</i></b>
4. 装饰器(decorator)功能
- 引入日志
- 函数执行时间统计
- 执行函数前预备处理
- 执行函数后清理功能
- 权限校验等场景
- 缓存
5. 装饰器示例
例1:无参数的函数
from time import ctime, sleep def timefun(func): def wrappedfunc(): print("%s called at %s"%(func.__name__, ctime())) func() return wrappedfunc @timefun def foo(): print("I am foo") foo() sleep(2) foo()
上面代码理解装饰器执行行为可理解成
foo = timefun(foo) #foo先作为参数赋值给func后,foo接收指向timefun返回的wrappedfunc foo() #调用foo(),即等价调用wrappedfunc() #内部函数wrappedfunc被引用,所以外部函数的func变量(自由变量)并没有释放 #func里保存的是原foo函数对象
例2:被装饰的函数有参数
from time import ctime, sleep def timefun(func): def wrappedfunc(a, b): print("%s called at %s"%(func.__name__, ctime())) print(a, b) func(a, b) return wrappedfunc @timefun def foo(a, b): print(a+b) foo(3,5) sleep(2) foo(2,4)
例3:被装饰的函数有不定长参数
from time import ctime, sleep def timefun(func): def wrappedfunc(*args, **kwargs): print("%s called at %s"%(func.__name__, ctime())) func(*args, **kwargs) return wrappedfunc @timefun def foo(a, b, c): print(a+b+c) foo(3,5,7) sleep(2) foo(2,4,9)
例4:装饰器中的return
from time import ctime, sleep def timefun(func): def wrappedfunc(): print("%s called at %s"%(func.__name__, ctime())) func() return wrappedfunc @timefun def foo(): print("I am foo") @timefun def getInfo(): return '----hahah---' foo() sleep(2) foo() print(getInfo())
执行结果:
foo called at Fri Nov 4 21:55:35 2016 I am foo foo called at Fri Nov 4 21:55:37 2016 I am foo getInfo called at Fri Nov 4 21:55:37 2016 None
如果修改装饰器为return func()
,则运行结果:
foo called at Fri Nov 4 21:55:57 2016 I am foo foo called at Fri Nov 4 21:55:59 2016 I am foo getInfo called at Fri Nov 4 21:55:59 2016 ----hahah---
总结:
- 一般情况下为了让装饰器更通用,可以有return
例5:装饰器带参数,在原有装饰器的基础上,设置外部变量
#decorator2.py from time import ctime, sleep def timefun_arg(pre="hello"): def timefun(func): def wrappedfunc(): print("%s called at %s %s"%(func.__name__, ctime(), pre)) return func() return wrappedfunc return timefun @timefun_arg("itcast") def foo(): print("I am foo") @timefun_arg("python") def too(): print("I am too") foo() sleep(2) foo() too() sleep(2) too()
可以理解为
foo()==timefun_arg("itcast")(foo)()
例6:类装饰器(扩展,非重点)
装饰器函数其实是这样一个接口约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。在Python中一般callable对象都是函数,但也有例外。只要某个对象重写了 __call__()
方法,那么这个对象就是callable的。
class Test(): def __call__(self): print('call me!') t = Test() t() # call me
类装饰器demo
class Test(object): def __init__(self, func): print("---初始化---") print("func name is %s"%func.__name__) self.__func = func def __call__(self): print("---装饰器中的功能---") self.__func() #说明: #1. 当用Test来装作装饰器对test函数进行装饰的时候,首先会创建Test的实例对象 # 并且会把test这个函数名当做参数传递到__init__方法中 # 即在__init__方法中的func变量指向了test函数体 # #2. test函数相当于指向了用Test创建出来的实例对象 # #3. 当在使用test()进行调用时,就相当于让这个对象(),因此会调用这个对象的__call__方法 # #4. 为了能够在__call__方法中调用原来test指向的函数体,所以在__init__方法中就需要一个实例属性来保存这个函数体的引用 # 所以才有了self.__func = func这句代码,从而在调用__call__方法中能够调用到test之前的函数体 @Test def test(): print("----test---") test() showpy()#如果把这句话注释,重新运行程序,依然会看到"--初始化--"
运行结果如下:
---初始化--- func name is test ---装饰器中的功能--- ----test---