提交: 3 解决: 2
[提交] [状态] [命题人:admin]
题目描述
There is a sequence of length N: a=(a1,a2,…,aN). Here, each ai is a non-negative integer.
Snuke can repeatedly perform the following operation:
Let the XOR of all the elements in a be x. Select an integer i (1≤i≤N) and replace ai with x.
Snuke's objective is to match a with another sequence b=(b1,b2,…,bN). Here, each bi is a non-negative integer.
Determine whether the objective is achievable, and find the minimum necessary number of operations if the answer is positive.
Constraints
2≤N≤105
ai and bi are integers.
0≤ai,bi<230
Snuke can repeatedly perform the following operation:
Let the XOR of all the elements in a be x. Select an integer i (1≤i≤N) and replace ai with x.
Snuke's objective is to match a with another sequence b=(b1,b2,…,bN). Here, each bi is a non-negative integer.
Determine whether the objective is achievable, and find the minimum necessary number of operations if the answer is positive.
Constraints
2≤N≤105
ai and bi are integers.
0≤ai,bi<230
输入
Input is given from Standard Input in the following format:
N
a1 a2 … aN
b1 b2 … bN
N
a1 a2 … aN
b1 b2 … bN
输出
If the objective is achievable, print the minimum necessary number of operations. Otherwise, print -1 instead.
样例输入
3
0 1 2
3 1 0
样例输出
2
来源/分类
操作为选择一个数,把这个数的值换为整个序列的异或和,交换之后整个序列的异或和就变为这个数的值。
求出a和b中所有数的异或和,存在a[0],b[0],这n+1个数如果不相同,那a就不可能与b相同。
如果两个序列中的数是相同的,那么当a[i]!=b[i]时,在a[i]与b[i]之间建一条边。这样最后就会得到一个图,把图中一个联通块的数换为与b相同花费的次数与联通块的大小相同,从一个联通块跳至另一个联通块需花费1。由于一开始我们可以移动的是a[0],如果a[0]不属于任何联通块,那么从a[0]跳至别的联通块需花费1。
#include "bits/stdc++.h" using namespace std; const int maxn = 1e5 + 100; int a[maxn], b[maxn]; int vis[maxn]; map<int, int> mp; vector<int> e[maxn]; void dfs(int now) { vis[now] = 1; for (auto p:e[now]) { if (!vis[p]) dfs(p); } } int main() { freopen("input.txt", "r", stdin); int n; cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i]; a[0] ^= a[i]; } for (int i = 1; i <= n; i++) { cin >> b[i]; b[0] ^= b[i]; } for (int i = 0; i <= n; i++) { mp[a[i]]++; mp[b[i]]--; } for (auto p:mp) { if (p.second != 0) { cout << -1 << endl; return 0; } } int id = 0; int ans = 0; for (int i = 0; i <= n; i++) { if (!mp[a[i]]) mp[a[i]] = ++id; } for (int i = 0; i <= n; i++) { if (a[i] != b[i]) { e[mp[a[i]]].push_back(mp[b[i]]), ans++; } } for (int i = 1; i <= id; i++) { if (!vis[i] && !e[i].empty()) { ans++; dfs(i); } } if (a[0] != b[0]) ans--;//a[0]和b[0]是不用花费一次交换使他们一样的,因为他们最终会变得一样 if (!e[mp[a[0]]].empty()) ans--; cout << ans << endl; return 0; }