• linux内核数据结构之kfifo


    1、前言

      最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:

      环形缓冲区的详细介绍及实现方法可以参考http://en.wikipedia.org/wiki/Circular_buffer,介绍的非常详细,列举了实现环形队列的几种方法。环形队列的不便之处在于如何判断队列是空还是满。维基百科上给三种实现方法。

    2、linux 内核kfifo

      kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:

    复制代码
    struct kfifo {
        unsigned char *buffer;     /* the buffer holding the data */
        unsigned int size;         /* the size of the allocated buffer */
        unsigned int in;           /* data is added at offset (in % size) */
        unsigned int out;          /* data is extracted from off. (out % size) */
        spinlock_t *lock;          /* protects concurrent modifications */
    };
    复制代码

    kfifo提供的方法有:

    复制代码
     1 //根据给定buffer创建一个kfifo
     2 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
     3                 gfp_t gfp_mask, spinlock_t *lock);
     4 //给定size分配buffer和kfifo
     5 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask,
     6                  spinlock_t *lock);
     7 //释放kfifo空间
     8 void kfifo_free(struct kfifo *fifo)
     9 //向kfifo中添加数据
    10 unsigned int kfifo_put(struct kfifo *fifo,
    11                 const unsigned char *buffer, unsigned int len)
    12 //从kfifo中取数据
    13 unsigned int kfifo_put(struct kfifo *fifo,
    14                 const unsigned char *buffer, unsigned int len)
    15 //获取kfifo中有数据的buffer大小
    16 unsigned int kfifo_len(struct kfifo *fifo)
    复制代码

           定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下:

    复制代码
     1 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
     2              gfp_t gfp_mask, spinlock_t *lock)
     3 {
     4     struct kfifo *fifo;
     6     /* size must be a power of 2 */
     7     BUG_ON(!is_power_of_2(size));
     9     fifo = kmalloc(sizeof(struct kfifo), gfp_mask);
    10     if (!fifo)
    11         return ERR_PTR(-ENOMEM);
    13     fifo->buffer = buffer;
    14     fifo->size = size;
    15     fifo->in = fifo->out = 0;
    16     fifo->lock = lock;
    17 
    18     return fifo;
    19 }
    20 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
    21 {
    22     unsigned char *buffer;
    23     struct kfifo *ret;
    29     if (!is_power_of_2(size)) {
    30         BUG_ON(size > 0x80000000);
    31         size = roundup_pow_of_two(size);
    32     }
    34     buffer = kmalloc(size, gfp_mask);
    35     if (!buffer)
    36         return ERR_PTR(-ENOMEM);
    38     ret = kfifo_init(buffer, size, gfp_mask, lock);
    39 
    40     if (IS_ERR(ret))
    41         kfree(buffer);
    43     return ret;
    44 }
    复制代码

      在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

          kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:

    复制代码
     1 static inline unsigned int kfifo_put(struct kfifo *fifo,
     2                 const unsigned char *buffer, unsigned int len)
     3 {
     4     unsigned long flags;
     5     unsigned int ret;
     6     spin_lock_irqsave(fifo->lock, flags);
     7     ret = __kfifo_put(fifo, buffer, len);
     8     spin_unlock_irqrestore(fifo->lock, flags);
     9     return ret;
    10 }
    11 
    12 static inline unsigned int kfifo_get(struct kfifo *fifo,
    13                      unsigned char *buffer, unsigned int len)
    14 {
    15     unsigned long flags;
    16     unsigned int ret;
    17     spin_lock_irqsave(fifo->lock, flags);
    18     ret = __kfifo_get(fifo, buffer, len);
    19         //当fifo->in == fifo->out时,buufer为空
    20     if (fifo->in == fifo->out)
    21         fifo->in = fifo->out = 0;
    22     spin_unlock_irqrestore(fifo->lock, flags);
    23     return ret;
    24 }
    25 
    26 
    27 unsigned int __kfifo_put(struct kfifo *fifo,
    28             const unsigned char *buffer, unsigned int len)
    29 {
    30     unsigned int l;
    31        //buffer中空的长度
    32     len = min(len, fifo->size - fifo->in + fifo->out);
    34     /*
    35      * Ensure that we sample the fifo->out index -before- we
    36      * start putting bytes into the kfifo.
    37      */
    39     smp_mb();
    41     /* first put the data starting from fifo->in to buffer end */
    42     l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
    43     memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
    45     /* then put the rest (if any) at the beginning of the buffer */
    46     memcpy(fifo->buffer, buffer + l, len - l);
    47 
    48     /*
    49      * Ensure that we add the bytes to the kfifo -before-
    50      * we update the fifo->in index.
    51      */
    53     smp_wmb();
    55     fifo->in += len;  //每次累加,到达最大值后溢出,自动转为0
    57     return len;
    58 }
    59 
    60 unsigned int __kfifo_get(struct kfifo *fifo,
    61              unsigned char *buffer, unsigned int len)
    62 {
    63     unsigned int l;
    64         //有数据的缓冲区的长度
    65     len = min(len, fifo->in - fifo->out);
    67     /*
    68      * Ensure that we sample the fifo->in index -before- we
    69      * start removing bytes from the kfifo.
    70      */
    72     smp_rmb();
    74     /* first get the data from fifo->out until the end of the buffer */
    75     l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
    76     memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);
    78     /* then get the rest (if any) from the beginning of the buffer */
    79     memcpy(buffer + l, fifo->buffer, len - l);
    81     /*
    82      * Ensure that we remove the bytes from the kfifo -before-
    83      * we update the fifo->out index.
    84      */
    86     smp_mb();
    88     fifo->out += len; //每次累加,到达最大值后溢出,自动转为0
    90     return len;
    91 }
    复制代码

      put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。

    (1)空的kfifo,

    (2)put一个buffer后

    (3)get一个buffer后

    (4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去

    3、测试程序

     仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:

    复制代码
      1 /**@brief 仿照linux kfifo写的ring buffer
      2  *@atuher Anker  date:2013-12-18
      3 * ring_buffer.h
      4  * */
      5 
      6 #ifndef KFIFO_HEADER_H 
      7 #define KFIFO_HEADER_H
      8 
      9 #include <inttypes.h>
     10 #include <string.h>
     11 #include <stdlib.h>
     12 #include <stdio.h>
     13 #include <errno.h>
     14 #include <assert.h>
     15 
     16 //判断x是否是2的次方
     17 #define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
     18 //取a和b中最小值
     19 #define min(a, b) (((a) < (b)) ? (a) : (b))
     20 
     21 struct ring_buffer
     22 {
     23     void         *buffer;     //缓冲区
     24     uint32_t     size;       //大小
     25     uint32_t     in;         //入口位置
     26     uint32_t       out;        //出口位置
     27     pthread_mutex_t *f_lock;    //互斥锁
     28 };
     29 //初始化缓冲区
     30 struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock)
     31 {
     32     assert(buffer);
     33     struct ring_buffer *ring_buf = NULL;
     34     if (!is_power_of_2(size))
     35     {
     36     fprintf(stderr,"size must be power of 2.
    ");
     37         return ring_buf;
     38     }
     39     ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer));
     40     if (!ring_buf)
     41     {
     42         fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s",
     43             errno, strerror(errno));
     44         return ring_buf;
     45     }
     46     memset(ring_buf, 0, sizeof(struct ring_buffer));
     47     ring_buf->buffer = buffer;
     48     ring_buf->size = size;
     49     ring_buf->in = 0;
     50     ring_buf->out = 0;
     51         ring_buf->f_lock = f_lock;
     52     return ring_buf;
     53 }
     54 //释放缓冲区
     55 void ring_buffer_free(struct ring_buffer *ring_buf)
     56 {
     57     if (ring_buf)
     58     {
     59     if (ring_buf->buffer)
     60     {
     61         free(ring_buf->buffer);
     62         ring_buf->buffer = NULL;
     63     }
     64     free(ring_buf);
     65     ring_buf = NULL;
     66     }
     67 }
     68 
     69 //缓冲区的长度
     70 uint32_t __ring_buffer_len(const struct ring_buffer *ring_buf)
     71 {
     72     return (ring_buf->in - ring_buf->out);
     73 }
     74 
     75 //从缓冲区中取数据
     76 uint32_t __ring_buffer_get(struct ring_buffer *ring_buf, void * buffer, uint32_t size)
     77 {
     78     assert(ring_buf || buffer);
     79     uint32_t len = 0;
     80     size  = min(size, ring_buf->in - ring_buf->out);        
     81     /* first get the data from fifo->out until the end of the buffer */
     82     len = min(size, ring_buf->size - (ring_buf->out & (ring_buf->size - 1)));
     83     memcpy(buffer, ring_buf->buffer + (ring_buf->out & (ring_buf->size - 1)), len);
     84     /* then get the rest (if any) from the beginning of the buffer */
     85     memcpy(buffer + len, ring_buf->buffer, size - len);
     86     ring_buf->out += size;
     87     return size;
     88 }
     89 //向缓冲区中存放数据
     90 uint32_t __ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
     91 {
     92     assert(ring_buf || buffer);
     93     uint32_t len = 0;
     94     size = min(size, ring_buf->size - ring_buf->in + ring_buf->out);
     95     /* first put the data starting from fifo->in to buffer end */
     96     len  = min(size, ring_buf->size - (ring_buf->in & (ring_buf->size - 1)));
     97     memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf->size - 1)), buffer, len);
     98     /* then put the rest (if any) at the beginning of the buffer */
     99     memcpy(ring_buf->buffer, buffer + len, size - len);
    100     ring_buf->in += size;
    101     return size;
    102 }
    103 
    104 uint32_t ring_buffer_len(const struct ring_buffer *ring_buf)
    105 {
    106     uint32_t len = 0;
    107     pthread_mutex_lock(ring_buf->f_lock);
    108     len = __ring_buffer_len(ring_buf);
    109     pthread_mutex_unlock(ring_buf->f_lock);
    110     return len;
    111 }
    112 
    113 uint32_t ring_buffer_get(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
    114 {
    115     uint32_t ret;
    116     pthread_mutex_lock(ring_buf->f_lock);
    117     ret = __ring_buffer_get(ring_buf, buffer, size);
    118     //buffer中没有数据
    119     if (ring_buf->in == ring_buf->out)
    120     ring_buf->in = ring_buf->out = 0;
    121     pthread_mutex_unlock(ring_buf->f_lock);
    122     return ret;
    123 }
    124 
    125 uint32_t ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
    126 {
    127     uint32_t ret;
    128     pthread_mutex_lock(ring_buf->f_lock);
    129     ret = __ring_buffer_put(ring_buf, buffer, size);
    130     pthread_mutex_unlock(ring_buf->f_lock);
    131     return ret;
    132 }
    133 #endif
    复制代码

    采用多线程模拟生产者和消费者编写测试程序,如下所示:

    复制代码
      1 /**@brief ring buffer测试程序,创建两个线程,一个生产者,一个消费者。
      2  * 生产者每隔1秒向buffer中投入数据,消费者每隔2秒去取数据。
      3  *@atuher Anker  date:2013-12-18
      4  * */
      5 #include "ring_buffer.h"
      6 #include <pthread.h>
      7 #include <time.h>
      8 
      9 #define BUFFER_SIZE  1024 * 1024
     10 
     11 typedef struct student_info
     12 {
     13     uint64_t stu_id;
     14     uint32_t age;
     15     uint32_t score;
     16 }student_info;
     17 
     18 
     19 void print_student_info(const student_info *stu_info)
     20 {
     21     assert(stu_info);
     22     printf("id:%lu	",stu_info->stu_id);
     23     printf("age:%u	",stu_info->age);
     24     printf("score:%u
    ",stu_info->score);
     25 }
     26 
     27 student_info * get_student_info(time_t timer)
     28 {
     29     student_info *stu_info = (student_info *)malloc(sizeof(student_info));
     30     if (!stu_info)
     31     {
     32     fprintf(stderr, "Failed to malloc memory.
    ");
     33     return NULL;
     34     }
     35     srand(timer);
     36     stu_info->stu_id = 10000 + rand() % 9999;
     37     stu_info->age = rand() % 30;
     38     stu_info->score = rand() % 101;
     39     print_student_info(stu_info);
     40     return stu_info;
     41 }
     42 
     43 void * consumer_proc(void *arg)
     44 {
     45     struct ring_buffer *ring_buf = (struct ring_buffer *)arg;
     46     student_info stu_info; 
     47     while(1)
     48     {
     49     sleep(2);
     50     printf("------------------------------------------
    ");
     51     printf("get a student info from ring buffer.
    ");
     52     ring_buffer_get(ring_buf, (void *)&stu_info, sizeof(student_info));
     53     printf("ring buffer length: %u
    ", ring_buffer_len(ring_buf));
     54     print_student_info(&stu_info);
     55     printf("------------------------------------------
    ");
     56     }
     57     return (void *)ring_buf;
     58 }
     59 
     60 void * producer_proc(void *arg)
     61 {
     62     time_t cur_time;
     63     struct ring_buffer *ring_buf = (struct ring_buffer *)arg;
     64     while(1)
     65     {
     66     time(&cur_time);
     67     srand(cur_time);
     68     int seed = rand() % 11111;
     69     printf("******************************************
    ");
     70     student_info *stu_info = get_student_info(cur_time + seed);
     71     printf("put a student info to ring buffer.
    ");
     72     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
     73     printf("ring buffer length: %u
    ", ring_buffer_len(ring_buf));
     74     printf("******************************************
    ");
     75     sleep(1);
     76     }
     77     return (void *)ring_buf;
     78 }
     79 
     80 int consumer_thread(void *arg)
     81 {
     82     int err;
     83     pthread_t tid;
     84     err = pthread_create(&tid, NULL, consumer_proc, arg);
     85     if (err != 0)
     86     {
     87     fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s
    ",
     88         errno, strerror(errno));
     89     return -1;
     90     }
     91     return tid;
     92 }
     93 int producer_thread(void *arg)
     94 {
     95     int err;
     96     pthread_t tid;
     97     err = pthread_create(&tid, NULL, producer_proc, arg);
     98     if (err != 0)
     99     {
    100     fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s
    ",
    101         errno, strerror(errno));
    102     return -1;
    103     }
    104     return tid;
    105 }
    106 
    107 
    108 int main()
    109 {
    110     void * buffer = NULL;
    111     uint32_t size = 0;
    112     struct ring_buffer *ring_buf = NULL;
    113     pthread_t consume_pid, produce_pid;
    114 
    115     pthread_mutex_t *f_lock = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));
    116     if (pthread_mutex_init(f_lock, NULL) != 0)
    117     {
    118     fprintf(stderr, "Failed init mutex,errno:%u,reason:%s
    ",
    119         errno, strerror(errno));
    120     return -1;
    121     }
    122     buffer = (void *)malloc(BUFFER_SIZE);
    123     if (!buffer)
    124     {
    125     fprintf(stderr, "Failed to malloc memory.
    ");
    126     return -1;
    127     }
    128     size = BUFFER_SIZE;
    129     ring_buf = ring_buffer_init(buffer, size, f_lock);
    130     if (!ring_buf)
    131     {
    132     fprintf(stderr, "Failed to init ring buffer.
    ");
    133     return -1;
    134     }
    135 #if 0
    136     student_info *stu_info = get_student_info(638946124);
    137     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
    138     stu_info = get_student_info(976686464);
    139     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
    140     ring_buffer_get(ring_buf, (void *)stu_info, sizeof(student_info));
    141     print_student_info(stu_info);
    142 #endif
    143     printf("multi thread test.......
    ");
    144     produce_pid  = producer_thread((void*)ring_buf);
    145     consume_pid  = consumer_thread((void*)ring_buf);
    146     pthread_join(produce_pid, NULL);
    147     pthread_join(consume_pid, NULL);
    148     ring_buffer_free(ring_buf);
    149     free(f_lock);
    150     return 0;
    151 }
    复制代码

    测试结果如下所示:

    4、参考资料

    http://blog.csdn.net/linyt/article/details/5764312

    http://en.wikipedia.org/wiki/Circular_buffer

    巧夺天工的kfifo

    Linux kernel里面从来就不缺少简洁,优雅和高效的代码,只是我们缺少发现和品味的眼光。在Linux kernel里面,简洁并不表示代码使用神出鬼没的超然技巧,相反,它使用的不过是大家非常熟悉的基础数据结构,但是kernel开发者能从基础的数据结构中,提炼出优美的特性。
    kfifo就是这样的一类优美代码,它十分简洁,绝无多余的一行代码,却非常高效。
    关于kfifo信息如下:

    本文分析的原代码版本: 2.6.24.4

    kfifo的定义文件: kernel/kfifo.c

    kfifo的头文件: include/linux/kfifo.h

    kfifo概述

    kfifo是内核里面的一个First In First Out数据结构,它采用环形循环队列的数据结构来实现;它提供一个无边界的字节流服务,最重要的一点是,它使用并行无锁编程技术,即当它用于只有一个入队线程和一个出队线程的场情时,两个线程可以并发操作,而不需要任何加锁行为,就可以保证kfifo的线程安全。
    kfifo代码既然肩负着这么多特性,那我们先一敝它的代码:

    struct kfifo {
        unsigned char *buffer;    /* the buffer holding the data */
        unsigned int size;    /* the size of the allocated buffer */
        unsigned int in;    /* data is added at offset (in % size) */
        unsigned int out;    /* data is extracted from off. (out % size) */
        spinlock_t *lock;    /* protects concurrent modifications */
    };

    这是kfifo的数据结构,kfifo主要提供了两个操作,__kfifo_put(入队操作)和__kfifo_get(出队操作)。 它的各个数据成员如下:

    buffer: 用于存放数据的缓存

    size: buffer空间的大小,在初化时,将它向上扩展成2的幂

    lock: 如果使用不能保证任何时间最多只有一个读线程和写线程,需要使用该lock实施同步。

    in, out: 和buffer一起构成一个循环队列。 in指向buffer中队头,而且out指向buffer中的队尾,它的结构如示图如下:

    +--------------------------------------------------------------+
    |            |<----------data---------->|                      |
    +--------------------------------------------------------------+
                 ^                          ^                      ^
                 |                          |                      |
                out                        in                     size

    当然,内核开发者使用了一种更好的技术处理了in, out和buffer的关系,我们将在下面进行详细分析。

    kfifo功能描述

    kfifo提供如下对外功能规格

    1. 只支持一个读者和一个读者并发操作
    2. 无阻塞的读写操作,如果空间不够,则返回实际访问空间

    kfifo_alloc 分配kfifo内存和初始化工作

    struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
    {
        unsigned char *buffer;
        struct kfifo *ret;
    
        /*
         * round up to the next power of 2, since our 'let the indices
         * wrap' tachnique works only in this case.
         */
        if (size & (size - 1)) {
            BUG_ON(size > 0x80000000);
            size = roundup_pow_of_two(size);
        }
    
        buffer = kmalloc(size, gfp_mask);
        if (!buffer)
            return ERR_PTR(-ENOMEM);
    
        ret = kfifo_init(buffer, size, gfp_mask, lock);
    
        if (IS_ERR(ret))
            kfree(buffer);
    
        return ret;
    }

    这里值得一提的是,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻——对kfifo->size取模运算可以转化为与运算,如下:

    kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

    在kfifo_alloc函数中,使用size & (size – 1)来判断size 是否为2幂,如果条件为真,则表示size不是2的幂,然后调用roundup_pow_of_two将之向上扩展为2的幂。

    这都是常用的技巧,只不过大家没有将它们结合起来使用而已,下面要分析的__kfifo_put和__kfifo_get则是将kfifo->size的特点发挥到了极致。

    __kfifo_put和__kfifo_get巧妙的入队和出队

    __kfifo_put是入队操作,它先将数据放入buffer里面,最后才修改in参数;__kfifo_get是出队操作,它先将数据从buffer中移走,最后才修改out。你会发现in和out两者各司其职。

    下面是__kfifo_put和__kfifo_get的代码

    unsigned int __kfifo_put(struct kfifo *fifo,
                 unsigned char *buffer, unsigned int len)
    {
        unsigned int l;
    
        len = min(len, fifo->size - fifo->in + fifo->out);
    
        /*
         * Ensure that we sample the fifo->out index -before- we
         * start putting bytes into the kfifo.
         */
    
        smp_mb();
    
        /* first put the data starting from fifo->in to buffer end */
        l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
        memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
    
        /* then put the rest (if any) at the beginning of the buffer */
        memcpy(fifo->buffer, buffer + l, len - l);
    
        /*
         * Ensure that we add the bytes to the kfifo -before-
         * we update the fifo->in index.
         */
    
        smp_wmb();
    
        fifo->in += len;
    
        return len;
    }
    

    奇怪吗?代码完全是线性结构,没有任何if-else分支来判断是否有足够的空间存放数据。内核在这里的代码非常简洁,没有一行多余的代码。

    l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));

    这个表达式计算当前写入的空间,换成人可理解的语言就是:

    l = kfifo可写空间和预期写入空间的最小值

    使用min宏来代if-else分支

    __kfifo_get也应用了同样技巧,代码如下:

    unsigned int __kfifo_get(struct kfifo *fifo,
                 unsigned char *buffer, unsigned int len)
    {
        unsigned int l;
    
        len = min(len, fifo->in - fifo->out);
    
        /*
         * Ensure that we sample the fifo->in index -before- we
         * start removing bytes from the kfifo.
         */
    
        smp_rmb();
    
        /* first get the data from fifo->out until the end of the buffer */
        l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
        memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);
    
        /* then get the rest (if any) from the beginning of the buffer */
        memcpy(buffer + l, fifo->buffer, len - l);
    
        /*
         * Ensure that we remove the bytes from the kfifo -before-
         * we update the fifo->out index.
         */
    
        smp_mb();
    
        fifo->out += len;
    
        return len;
    }

    认真读两遍吧,我也读了多次,每次总是有新发现,因为in, out和size的关系太巧妙了,竟然能利用上unsigned int回绕的特性。

    原来,kfifo每次入队或出队,kfifo->in或kfifo->out只是简单地kfifo->in/kfifo->out += len,并没有对kfifo->size 进行取模运算。因此kfifo->in和kfifo->out总是一直增大,直到unsigned in最大值时,又会绕回到0这一起始端。但始终满足:

    kfifo->in - kfifo->out <= kfifo->size

    即使kfifo->in回绕到了0的那一端,这个性质仍然是保持的。

    对于给定的kfifo:

    数据空间长度为:kfifo->in - kfifo->out

    而剩余空间(可写入空间)长度为:kfifo->size - (kfifo->in - kfifo->out)

    尽管kfifo->in和kfofo->out一直超过kfifo->size进行增长,但它对应在kfifo->buffer空间的下标却是如下:

    kfifo->in % kfifo->size (i.e. kfifo->in & (kfifo->size - 1))

    kfifo->out % kfifo->size (i.e. kfifo->out & (kfifo->size - 1))

    往kfifo里面写一块数据时,数据空间、写入空间和kfifo->size的关系如果满足:

    kfifo->in % size + len > size

    那就要做写拆分了,见下图:

                                                        kfifo_put(写)空间开始地址
                                                        |
                                                       \_/
                                                        |XXXXXXXXXX
    XXXXXXXX|                                                    
    +--------------------------------------------------------------+
    |                        |<----------data---------->|          |
    +--------------------------------------------------------------+
                             ^                          ^          ^
                             |                          |          |
                           out%size                   in%size     size
            ^
            |
          写空间结束地址                      

    第一块当然是: [kfifo->in % kfifo->size, kfifo->size]
    第二块当然是:[0, len - (kfifo->size - kfifo->in % kfifo->size)]

    下面是代码,细细体味吧:

    /* first put the data starting from fifo->in to buffer end */   
    l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));   
    memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);   
    
    /* then put the rest (if any) at the beginning of the buffer */   
    memcpy(fifo->buffer, buffer + l, len - l);  

    对于kfifo_get过程,也是类似的,请各位自行分析。

    kfifo_get和kfifo_put无锁并发操作

    计算机科学家已经证明,当只有一个读经程和一个写线程并发操作时,不需要任何额外的锁,就可以确保是线程安全的,也即kfifo使用了无锁编程技术,以提高kernel的并发。

    kfifo使用in和out两个指针来描述写入和读取游标,对于写入操作,只更新in指针,而读取操作,只更新out指针,可谓井水不犯河水,示意图如下:

                                                   |<--写入-->|
    +--------------------------------------------------------------+
    |                        |<----------data----->|               |
    +--------------------------------------------------------------+
                             |<--读取-->|
                             ^                     ^               ^
                             |                     |               |
                            out                   in              size

    为了避免读者看到写者预计写入,但实际没有写入数据的空间,写者必须保证以下的写入顺序:

    1. 往[kfifo->in, kfifo->in + len]空间写入数据
    2. 更新kfifo->in指针为 kfifo->in + len

    在操作1完成时,读者是还没有看到写入的信息的,因为kfifo->in没有变化,认为读者还没有开始写操作,只有更新kfifo->in之后,读者才能看到。

    那么如何保证1必须在2之前完成,秘密就是使用内存屏障:smp_mb(),smp_rmb(), smp_wmb(),来保证对方观察到的内存操作顺序。

    总结

    读完kfifo代码,令我想起那首诗“众里寻他千百度,默然回首,那人正在灯火阑珊处”。不知你是否和我一样,总想追求简洁,高质量和可读性的代码,当用尽各种方法,江郞才尽之时,才发现Linux kernel里面的代码就是我们寻找和学习的对象。

  • 相关阅读:
    传参问题-HttpMessageNotReableException
    排序03-简单排序法
    排序02-直接插入排序法
    排序01-冒泡排序法
    书摘
    CS229
    SLAM学习笔记
    形态学图像处理
    SLAM学习笔记
    SLAM学习笔记
  • 原文地址:https://www.cnblogs.com/alantu2018/p/8468969.html
Copyright © 2020-2023  润新知