• Linux内核同步


    一、源由:为何引入Per-CPU变量?

    1、lock bus带来的性能问题

    在ARM平台上,ARMv6之前,SWP和SWPB指令被用来支持对shared memory的访问:

    SWP <Rt>, <Rt2>, [<Rn>]

    Rn中保存了SWP指令要操作的内存地址,通过该指令可以将Rn指定的内存数据加载到Rt寄存器,同时将Rt2寄存器中的数值保存到Rn指定的内存中去。

    我们在原子操作那篇文档中描述的read-modify-write的问题本质上是一个保持对内存read和write访问的原子性的问题。也就是说对内存的读和写的访问不能被打断。对该问题的解决可以通过硬件、软件或者软硬件结合的方法来进行。早期的ARM CPU给出的方案就是依赖硬件:SWP这个汇编指令执行了一次读内存操作、一次写内存操作,但是从程序员的角度看,SWP这条指令就是原子的,读写之间不会被任何的异步事件打断。具体底层的硬件是如何做的呢?这时候,硬件会提供一个lock signal,在进行memory操作的时候设定lock信号,告诉总线这是一个不可被中断的内存访问,直到完成了SWP需要进行的两次内存访问之后再clear lock信号。

    lock memory bus对多核系统的性能造成严重的影响(系统中其他的processor对那条被lock的memory bus的访问就被hold住了),如何解决这个问题?最好的锁机制就是不使用锁,因此解决这个问题可以使用釜底抽薪的方法,那就是不在系统中的多个processor之间共享数据,给每一个CPU分配一个不就OK了吗。

    当然,随着技术的发展,在ARMv6之后的ARM CPU已经不推荐使用SWP这样的指令,而是提供了LDREX和STREX这样的指令。这种方法是使用软硬件结合的方法来解决原子操作问题,看起来代码比较复杂,但是系统的性能可以得到提升。其实,从硬件角度看,LDREX和STREX这样的指令也是采用了lock-free的做法。OK,由于不再lock bus,看起来Per-CPU变量存在的基础被打破了。不过考虑cache的操作,实际上它还是有意义的。

    2、cache的影响

    The Memory Hierarchy文档中,我们已经了解了关于memory一些基础的知识,一些基础的内容,这里就不再重复了。我们假设一个多核系统中的cache如下:

    cache

    每个CPU都有自己的L1 cache(包括data cache和instruction cache),所有的CPU共用一个L2 cache。L1、L2以及main memory的访问速度之间的差异都是非常大,最高的性能的情况下当然是L1 cache hit,这样就不需要访问下一阶memory来加载cache line。

    我们首先看在多个CPU之间共享内存的情况。这种情况下,任何一个CPU如果修改了共享内存就会导致所有其他CPU的L1 cache上对应的cache line变成invalid(硬件完成)。虽然对性能造成影响,但是系统必须这么做,因为需要维持cache的同步。将一个共享memory变成Per-CPU memory本质上是一个耗费更多memory来解决performance的方法。当一个在多个CPU之间共享的变量变成每个CPU都有属于自己的一个私有的变量的时候,我们就不必考虑来自多个CPU上的并发,仅仅考虑本CPU上的并发就OK了。当然,还有一点要注意,那就是在访问Per-CPU变量的时候,不能调度,当然更准确的说法是该task不能调度到其他CPU上去。目前的内核的做法是在访问Per-CPU变量的时候disable preemptive,虽然没有能够完全避免使用锁的机制(disable preemptive也是一种锁的机制),但毫无疑问,这是一种代价比较小的锁。

    二、接口

    1、静态声明和定义Per-CPU变量的API如下表所示:

    声明和定义Per-CPU变量的API 描述
    DECLARE_PER_CPU(type, name)
    DEFINE_PER_CPU(type, name)
    普通的、没有特殊要求的per cpu变量定义接口函数。没有对齐的要求
    DECLARE_PER_CPU_FIRST(type, name)
    DEFINE_PER_CPU_FIRST(type, name)
    通过该API定义的per cpu变量位于整个per cpu相关section的最前面。
    DECLARE_PER_CPU_SHARED_ALIGNED(type, name)
    DEFINE_PER_CPU_SHARED_ALIGNED(type, name)
    通过该API定义的per cpu变量在SMP的情况下会对齐到L1 cache line ,对于UP,不需要对齐到cachine line
    DECLARE_PER_CPU_ALIGNED(type, name)
    DEFINE_PER_CPU_ALIGNED(type, name)
    无论SMP或者UP,都是需要对齐到L1 cache line
    DECLARE_PER_CPU_PAGE_ALIGNED(type, name)
    DEFINE_PER_CPU_PAGE_ALIGNED(type, name)
    为定义page aligned per cpu变量而设定的API接口
    DECLARE_PER_CPU_READ_MOSTLY(type, name)
    DEFINE_PER_CPU_READ_MOSTLY(type, name)
    通过该API定义的per cpu变量是read mostly的

      看到这样“丰富多彩”的Per-CPU变量的API,你是不是已经醉了。这些定义使用在不同的场合,主要的factor包括:

    -该变量在section中的位置

    -该变量的对齐方式

    -该变量对SMP和UP的处理不同

    -访问per cpu的形态

    例如:如果你准备定义的per cpu变量是要求按照page对齐的,那么在定义该per cpu变量的时候需要使用DECLARE_PER_CPU_PAGE_ALIGNED。如果只要求在SMP的情况下对齐到cache line,那么使用DECLARE_PER_CPU_SHARED_ALIGNED来定义该per cpu变量。

    2、访问静态声明和定义Per-CPU变量的API

    静态定义的per cpu变量不能象普通变量那样进行访问,需要使用特定的接口函数,具体如下:

    get_cpu_var(var)

    put_cpu_var(var)

    上面这两个接口函数已经内嵌了锁的机制(preempt disable),用户可以直接调用该接口进行本CPU上该变量副本的访问。如果用户确认当前的执行环境已经是preempt disable(或者是更厉害的锁,例如关闭了CPU中断),那么可以使用lock-free版本的Per-CPU变量的API:__get_cpu_var。

     

    3、动态分配Per-CPU变量的API如下表所示:

    动态分配和释放Per-CPU变量的API 描述
    alloc_percpu(type) 分配类型是type的per cpu变量,返回per cpu变量的地址(注意:不是各个CPU上的副本)
    void free_percpu(void __percpu *ptr) 释放ptr指向的per cpu变量空间

     

    4、访问动态分配Per-CPU变量的API如下表所示:

    访问Per-CPU变量的API 描述
    get_cpu_ptr 这个接口是和访问静态Per-CPU变量的get_cpu_var接口是类似的,当然,这个接口是for 动态分配Per-CPU变量
    put_cpu_ptr 同上
    per_cpu_ptr(ptr, cpu) 根据per cpu变量的地址和cpu number,返回指定CPU number上该per cpu变量的地址

     

    三、实现

    1、静态Per-CPU变量定义

    我们以DEFINE_PER_CPU的实现为例子,描述linux kernel中如何实现静态Per-CPU变量定义。具体代码如下:

    #define DEFINE_PER_CPU(type, name)                   
        DEFINE_PER_CPU_SECTION(type, name, "")

    type就是变量的类型,name是per cpu变量符号。DEFINE_PER_CPU_SECTION宏可以把一个per cpu变量放到指定的section中,具体代码如下:

    #define DEFINE_PER_CPU_SECTION(type, name, sec)               
        __PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES            -----安排section
        __typeof__(type) name----------------------定义变量

    在这里具体arch specific的percpu代码中(arch/arm/include/asm/percpu.h)可以定义PER_CPU_DEF_ATTRIBUTES,以便控制该per cpu变量的属性,当然,如果arch specific的percpu代码不定义,那么在general arch-independent的代码中(include/asm-generic/percpu.h)会定义为空。这里可以顺便提一下Per-CPU变量的软件层次:

    (1)arch-independent interface。在include/linux/percpu.h文件中,定义了内核其他模块要使用per cpu机制使用的接口API以及相关数据结构的定义。内核其他模块需要使用per cpu变量接口的时候需要include该头文件

    (2)arch-general interface。在include/asm-generic/percpu.h文件中。如果所有的arch相关的定义都是一样的,那么就把它抽取出来,放到asm-generic目录下。毫无疑问,这个文件定义的接口和数据结构是硬件相关的,只不过软件抽象各个arch-specific的内容,形成一个arch general layer。一般来说,我们不需要直接include该头文件,include/linux/percpu.h会include该头文件。

    (3)arch-specific。这是和硬件相关的接口,在arch/arm/include/asm/percpu.h,定义了ARM平台中,具体和per cpu相关的接口代码。

    我们回到正题,看看__PCPU_ATTRS的定义:

    #define __PCPU_ATTRS(sec)                       
        __percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))   
        PER_CPU_ATTRIBUTES

    PER_CPU_BASE_SECTION 定义了基础的section name symbol,定义如下:

    #ifndef PER_CPU_BASE_SECTION
    #ifdef CONFIG_SMP
    #define PER_CPU_BASE_SECTION ".data..percpu"
    #else
    #define PER_CPU_BASE_SECTION ".data"
    #endif
    #endif

    虽然有各种各样的静态Per-CPU变量定义方法,但是都是类似的,只不过是放在不同的section中,属性不同而已,这里就不看其他的实现了,直接给出section的安排:

    (1)普通per cpu变量的section安排

      SMP UP
    Build-in kernel ".data..percpu" section ".data" section
    defined in module ".data..percpu" section ".data" section

    (2)first per cpu变量的section安排

      SMP UP
    Build-in kernel ".data..percpu..first" section ".data" section
    defined in module ".data..percpu..first" section ".data" section

    (3)SMP shared aligned per cpu变量的section安排

      SMP UP
    Build-in kernel ".data..percpu..shared_aligned" section ".data" section
    defined in module ".data..percpu" section ".data" section

    (4)aligned per cpu变量的section安排

      SMP UP
    Build-in kernel ".data..percpu..shared_aligned" section ".data..shared_aligned" section
    defined in module ".data..percpu" section ".data..shared_aligned" section

    (5)page aligned per cpu变量的section安排

      SMP UP
    Build-in kernel ".data..percpu..page_aligned" section ".data..page_aligned" section
    defined in module ".data..percpu..page_aligned" section ".data..page_aligned" section

    (6)read mostly per cpu变量的section安排

      SMP UP
    Build-in kernel ".data..percpu..readmostly" section ".data..readmostly" section
    defined in module ".data..percpu..readmostly" section ".data..readmostly" section

     

    了解了静态定义Per-CPU变量的实现,但是为何要引入这么多的section呢?对于kernel中的普通变量,经过了编译和链接后,会被放置到.data或者.bss段,系统在初始化的时候会准备好一切(例如clear bss),由于per cpu变量的特殊性,内核将这些变量放置到了其他的section,位于kernel address space中__per_cpu_start和__per_cpu_end之间,我们称之Per-CPU变量的原始变量(我也想不出什么好词了)。

    只有Per-CPU变量的原始变量还是不够的,必须为每一个CPU建立一个副本,怎么建?直接静态定义一个NR_CPUS的数组?NR_CPUS定义了系统支持的最大的processor的个数,并不是实际中系统processor的数目,这样的定义非常浪费内存。此外,静态定义的数据在内存中连续,对于UMA系统而言是OK的,对于NUMA系统,每个CPU上的Per-CPU变量的副本应该位于它访问最快的那段memory上,也就是说Per-CPU变量的各个CPU副本可能是散布在整个内存地址空间的,而这些空间之间是有空洞的。本质上,副本per cpu内存的分配归属于内存管理子系统,因此,分配per cpu变量副本的内存本文不会详述,大致的思路如下:

    percpu

    内存管理子系统会根据当前的内存配置为每一个CPU分配一大块memory,对于UMA,这个memory也是位于main memory,对于NUMA,有可能是分配最靠近该CPU的memory(也就是说该cpu访问这段内存最快),但无论如何,这些都是内存管理子系统需要考虑的。无论静态还是动态per cpu变量的分配,其机制都是一样的,只不过,对于静态per cpu变量,需要在系统初始化的时候,对应per cpu section,预先动态分配一个同样size的per cpu chunk。在vmlinux.lds.h文件中,定义了percpu section的排列情况:

    #define PERCPU_INPUT(cacheline)                       
        VMLINUX_SYMBOL(__per_cpu_start) = .;               
        *(.data..percpu..first)                       
        . = ALIGN(PAGE_SIZE);                       
        *(.data..percpu..page_aligned)                   
        . = ALIGN(cacheline);                       
        *(.data..percpu..readmostly)                   
        . = ALIGN(cacheline);                       
        *(.data..percpu)                       
        *(.data..percpu..shared_aligned)               
        VMLINUX_SYMBOL(__per_cpu_end) = .;

    对于build in内核的那些per cpu变量,必然位于__per_cpu_start和__per_cpu_end之间的per cpu section。在系统初始化的时候(setup_per_cpu_areas),分配per cpu memory chunk,并将per cpu section copy到每一个chunk中。

     

    2、访问静态定义的per cpu变量

    代码如下:

    #define get_cpu_var(var) (*({               
        preempt_disable();               
        &__get_cpu_var(var); }))

    再看到get_cpu_var和__get_cpu_var这两个符号,相信广大人民群众已经相当的熟悉,一个持有锁的版本,一个lock-free的版本。为防止当前task由于抢占而调度到其他的CPU上,在访问per cpu memory的时候都需要使用preempt_disable这样的锁的机制。我们来看__get_cpu_var:

    #define __get_cpu_var(var) (*this_cpu_ptr(&(var)))

    #define this_cpu_ptr(ptr) __this_cpu_ptr(ptr)

    对于ARM平台,我们没有定义__this_cpu_ptr,因此采用asm-general版本的:

    #define __this_cpu_ptr(ptr) SHIFT_PERCPU_PTR(ptr, __my_cpu_offset)

    SHIFT_PERCPU_PTR这个宏定义从字面上就可以看出它是可以从原始的per cpu变量的地址,通过简单的变换(SHIFT)转成实际的per cpu变量副本的地址。实际上,per cpu内存管理模块可以保证原始的per cpu变量的地址和各个CPU上的per cpu变量副本的地址有简单的线性关系(就是一个固定的offset)。__my_cpu_offset这个宏定义就是和offset相关的,如果arch specific没有定义,那么可以采用asm general版本的,如下:

    #define __my_cpu_offset per_cpu_offset(raw_smp_processor_id())

    raw_smp_processor_id可以获取本CPU的ID,如果没有arch specific没有定义__per_cpu_offset这个宏,那么offset保存在__per_cpu_offset的数组中(下面只是数组声明,具体定义在mm/percpu.c文件中),如下:

    #ifndef __per_cpu_offset
    extern unsigned long __per_cpu_offset[NR_CPUS];

    #define per_cpu_offset(x) (__per_cpu_offset[x])
    #endif

    对于ARMV6K和ARMv7版本,offset保存在TPIDRPRW寄存器中,这样是为了提升系统性能。

     

    3、动态分配per cpu变量

    这部分内容留给内存管理子系统吧。

  • 相关阅读:
    第5次作业+105032014118+陈元可
    第4次作业类测试代码+105032014118+陈元可
    实验二+118+陈元可
    第三次作业+105032014118
    第一次作业+105032014118
    第二次作业+105032014118
    UT源码105032014118
    ORACLE基本操作
    实验四+074+林盼皇
    实验三+074+林盼皇
  • 原文地址:https://www.cnblogs.com/alantu2018/p/8447491.html
Copyright © 2020-2023  润新知