• 我对sobel算子的理解


    转自:http://blog.csdn.net/yanmy2012/article/details/8110316

    索贝尔算子Sobeloperator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量

    Sobel卷积因子为:

    该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,GxGy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:

    具体计算如下:

    图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:

     

    通常,为了提高效率使用不开平方的近似值:

     

    然后可用以下公式计算梯度方向:

     

    若图像为: 

     

    则使用近似公式的计算的结果为:

     

     

    Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的,另一个是检测垂直边沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。将Sobel算子矩阵中的所有2改为根号2,就能得到各向同性Sobel的矩阵。

      由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。美中不足的是,Sobel算子并没有将图像的主体与背景严格地区分开来,即Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。

     

     

     

    参考:http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm

    http://blog.csdn.NET/tianhai110/article/details/5663756

     

    除此之外:由于基础核具有关于0,0,0所在的中轴正负对称,所以通过对基础核的旋转,和图像做卷积,可以获得灰度图的边缘图,同时消去旋转角方向+180°上的边缘,迭代多个方向即可消去多个方向的边缘,但是为消去的边缘会加倍。

    基础核:

    -1

    0

    1

    -2

    0

    2

    -1

    0

    1

     

    旋转后的核(顺时针为正)

     

    45°

    -2

    -1

    0

    -1

    0

    1

    0

    1

    2

     90°

    -1

    -2

    -1

    0

    0

    0

    1

    2

    1

     135°

    0

    -1

    -2

    1

    0

    -1

    2

    1

    0

    180°

    1

    0

    -1

    2

    0

    -2

    1

    0

    -1

     225°

    2

    1

    0

    1

    0

    -1

    0

    -1

    -2

                      

     

     

     

      270°

    1

    2

    1

    0

    0

    0

    -1

    -2

    -1

     

    原图:

                    

     结果图如下,按0°,45°,90°,135°,180°,225°,270°排序

     

     

     

     

     

     

    代码如下:

     

     

    #include "cv.h"
    #include "cxmisc.h"
    #include "highgui.h"
    #include <vector>
    #include <string>
    #include <algorithm>
    #include <stdio.h>
    #include <ctype.h>

    #pragma comment(lib, "G:\OpenCV-2.1.0\vc2008\lib\cxcore210d.lib")
    #pragma comment(lib, "G:\OpenCV-2.1.0\vc2008\lib\cv210d.lib")
    #pragma comment(lib, "G:\OpenCV-2.1.0\vc2008\lib\highgui210d.lib")

    //对不同深度图片和较大的图片进行放缩,以至于可以在显示器上完全显示

    void ShowConvertImage(char name[200],IplImage* Image)
    {
     cvNamedWindow(name,1);
     char savename[350];
     sprintf(savename,"%s.jpg",name);
     
     cvSaveImage(savename,Image);
        if(Image->width<1280)
     {
      
      if(Image->depth!=IPL_DEPTH_8U)
      {   
        IplImage* NormalizeImage=NULL;
        NormalizeImage=cvCreateImage(cvGetSize(Image),IPL_DEPTH_8U,1);
        cvConvertScale(Image,NormalizeImage,1,0);//将图转为0-256,用于图片显示,
        cvShowImage(name,NormalizeImage);
                 cvReleaseImage(&NormalizeImage);
      }
      else
      {
                 cvShowImage(name,Image);
      }
     }
     else
     {
      IplImage* ImageResize=cvCreateImage(cvSize(1280,Image->height/(Image->width/1280)),Image->depth ,Image->nChannels);
      cvResize(Image,ImageResize,1);
         if(ImageResize->depth!=IPL_DEPTH_8U)
      {   
        IplImage* NormalizeImage=NULL;
        NormalizeImage=cvCreateImage(cvGetSize(ImageResize),IPL_DEPTH_8U,1);
        cvConvertScale(Image,NormalizeImage,1,0);//将图转为0-256,用于图片显示,
        cvShowImage(name,NormalizeImage);
                 cvReleaseImage(&NormalizeImage);
      }
      else
      {
                 cvShowImage(name,ImageResize);
      }
     
      cvReleaseImage(&ImageResize); 
     }
     
    }
    //对较大的图片缩放,不然显示器分辨率不支持,只能部分显示,具体见http://blog.csdn.net/yanmy2012/article/details/8110516
    int MaxImageWidth=2650;
    float Scale=1;
    int MinPicWidth=640;
    int MinPicHeight=428*MinPicWidth/640;
    int Maxradius_self=68*MinPicWidth/640;
    int Minradius_self=50*MinPicWidth/640;
    int Radius_dist=20*MinPicWidth/640;
    int MaxPicWidth=MinPicWidth*Scale;
    int MaxPicHeight=MinPicHeight*Scale;

    void main()
    {

        IplImage * pictemp=NULL;
        IplImage * pic=NULL;
        char *imgpath="12.jpg"; 
        pictemp=cvLoadImage(imgpath,-1);///获取图片,原色获取
     //pictemp=cvLoadImage("IMG_02071.jpg",-1);///获取图片,原色获取
        /////////////////改变图片的像素大小
     
     
     if(pic!=NULL)
     {
      cvReleaseImage(&pic);
     }
       
     if(pictemp->width>MaxImageWidth)
     {
         pic=cvCreateImage(cvSize(MaxPicWidth,MaxPicHeight),pictemp->depth ,3);
       
         cvResize(pictemp,pic,CV_INTER_AREA );
     }
     else
     {
     
        pic=cvCloneImage(pictemp);
     
     }  
        ShowConvertImage("pic",pic);
        cvReleaseImage(&pictemp);
     
     IplImage * Gray_pic=cvCreateImage(cvGetSize(pic),pic->depth ,1);
     cvCvtColor(pic,Gray_pic, CV_BGR2GRAY );    //////将Image变成灰度图片保存在gray中
     cvCanny(Gray_pic,Gray_pic,50,150,3);
        IplImage * Result_pic=cvCreateImage(cvGetSize(pic),IPL_DEPTH_16S ,1);
       // IplImage * Result_pic=cvCreateImage(cvGetSize(pic),IPL_DEPTH_8U ,1);

     CvMat *kernel=cvCreateMat(3,3,CV_32FC1);
     ///卷积核的初始化
     ////90度模板卷积核
     {
        cvSetReal2D(kernel,0,0, 1);  cvSetReal2D(kernel,0,1, 2); cvSetReal2D(kernel,0,2, 1);
        cvSetReal2D(kernel,1,0, 0);  cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 0);
     cvSetReal2D(kernel,2,0,-1);  cvSetReal2D(kernel,2,1,-2); cvSetReal2D(kernel,2,2,-1);
     }
     ////////////进行卷积核计算
     cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1));
        ShowConvertImage("卷积结果90°",Result_pic);

     

     ////225度模板卷积核
     {
        cvSetReal2D(kernel,0,0, 2);  cvSetReal2D(kernel,0,1, 1); cvSetReal2D(kernel,0,2, 0);
        cvSetReal2D(kernel,1,0, 1);  cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2,-1);
     cvSetReal2D(kernel,2,0, 0);  cvSetReal2D(kernel,2,1,-1); cvSetReal2D(kernel,2,2,-2);
     }
     ////////////进行卷积核计算
     cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1));
        ShowConvertImage("卷积结果225°",Result_pic);
     ////180度模板卷积核
     {
        cvSetReal2D(kernel,0,0, 1);  cvSetReal2D(kernel,0,1, 0); cvSetReal2D(kernel,0,2,-1);
        cvSetReal2D(kernel,1,0, 2);  cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2,-2);
     cvSetReal2D(kernel,2,0, 1);  cvSetReal2D(kernel,2,1, 0); cvSetReal2D(kernel,2,2,-1);
     }
     ////////////进行卷积核计算
     cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1));
        ShowConvertImage("卷积结果180°",Result_pic);
     ////135度模板卷积核
     {
        cvSetReal2D(kernel,0,0, 0);  cvSetReal2D(kernel,0,1,-1); cvSetReal2D(kernel,0,2,-2);
        cvSetReal2D(kernel,1,0, 1);  cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2,-1);
     cvSetReal2D(kernel,2,0, 2);  cvSetReal2D(kernel,2,1, 1); cvSetReal2D(kernel,2,2, 0);
     }
     ////////////进行卷积核计算
     cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1));
        ShowConvertImage("卷积结果135°",Result_pic);
     //90度模板卷积核
     {
        cvSetReal2D(kernel,0,0,-1);  cvSetReal2D(kernel,0,1,-2); cvSetReal2D(kernel,0,2,-1);
        cvSetReal2D(kernel,1,0, 0);  cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 0);
     cvSetReal2D(kernel,2,0, 1);  cvSetReal2D(kernel,2,1, 2); cvSetReal2D(kernel,2,2, 1);
     }
     ////////////进行卷积核计算
     cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1));
        ShowConvertImage("卷积结果90°",Result_pic);
     ////45度模板卷积核
     {
        cvSetReal2D(kernel,0,0,-2);  cvSetReal2D(kernel,0,1,-1); cvSetReal2D(kernel,0,2, 0);
        cvSetReal2D(kernel,1,0,-1);  cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 1);
     cvSetReal2D(kernel,2,0, 0);  cvSetReal2D(kernel,2,1, 1); cvSetReal2D(kernel,2,2, 2);
     }
     ////////////进行卷积核计算
     cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1));
        ShowConvertImage("卷积结果45°",Result_pic);
     ////0度模板卷积核
     {
        cvSetReal2D(kernel,0,0,-1);  cvSetReal2D(kernel,0,1, 0); cvSetReal2D(kernel,0,2, 1);
        cvSetReal2D(kernel,1,0,-2);  cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 2);
     cvSetReal2D(kernel,2,0,-1);  cvSetReal2D(kernel,2,1, 0); cvSetReal2D(kernel,2,2, 1);
     }
     ////////////进行卷积核计算
     cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(1,1));
        ShowConvertImage("卷积结果0°",Result_pic);
       
     //315度模板卷积核
     {
        cvSetReal2D(kernel,0,0, 0);  cvSetReal2D(kernel,0,1, 1); cvSetReal2D(kernel,0,2, 2);
        cvSetReal2D(kernel,1,0,-1);  cvSetReal2D(kernel,1,1, 0); cvSetReal2D(kernel,1,2, 1);
     cvSetReal2D(kernel,2,0,-2);  cvSetReal2D(kernel,2,1,-1); cvSetReal2D(kernel,2,2, 0);
     }
     ////////////进行卷积核计算
     cvFilter2D(Gray_pic,Result_pic,kernel,cvPoint(-1,-1));
        ShowConvertImage("卷积结果315",Result_pic);
        
     
     cvSobel(Gray_pic,Result_pic,0,1,3);
     ShowConvertImage("Sobel结果X=0,Y=1",Result_pic);
     cvSobel(Gray_pic,Result_pic,0,2,3);
     ShowConvertImage("Sobel结果X=0,Y=2",Result_pic);
     cvSobel(Gray_pic,Result_pic,1,0,3);
     ShowConvertImage("Sobel结果X=1,Y=0",Result_pic);
     cvSobel(Gray_pic,Result_pic,1,1,3);
     ShowConvertImage("Sobel结果X=1,Y=1",Result_pic);
     cvSobel(Gray_pic,Result_pic,1,2,3);
     ShowConvertImage("Sobel结果X=1,Y=2",Result_pic);
     cvSobel(Gray_pic,Result_pic,2,0,3);
     ShowConvertImage("Sobel结果X=2,Y=0",Result_pic);
     cvSobel(Gray_pic,Result_pic,2,1,3);
     ShowConvertImage("Sobel结果X=2,Y=1",Result_pic);
     cvSobel(Gray_pic,Result_pic,2,2,3);
     ShowConvertImage("Sobel结果X=2,Y=2",Result_pic);

     cvWaitKey(0);
        cvReleaseImage(&Result_pic);
     cvReleaseImage(&Gray_pic);
     cvReleaseImage(&pic);
     cvReleaseMat(&kernel);

     

     


    }

     


  • 相关阅读:
    【2017 Multi-University Training Contest
    【CS Round #39 (Div. 2 only) D】Seven-segment Display
    【CS Round #39 (Div. 2 only) C】Reconstruct Sum
    【CS Round #39 (Div. 2 only) B】Circle Elimination
    【CS Round #39 (Div. 2 only) A】Removed Pages
    【Uva 10163】Storage Keepers
    【Uva 1632】Alibaba
    【2017 Multi-University Training Contest
    Network Function Virtualization for a Network Device
    C#程序集相关的概念
  • 原文地址:https://www.cnblogs.com/alan666/p/8312028.html
Copyright © 2020-2023  润新知