• Idea里面远程提交spark任务到yarn集群


    作者:JasonLee

    1.本地idea远程提交到yarn集群

    import org.apache.kafka.common.serialization.StringDeserializer
    import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import org.apache.spark.{SparkConf}
    import spark.wordcount.kafkaStreams
    
    object RemoteSubmitApp {
      def main(args: Array[String]) {
        // 设置提交任务的用户
        System.setProperty("HADOOP_USER_NAME", "root")
        val conf = new SparkConf()
          .setAppName("WordCount")
          // 设置yarn-client模式提交
          .setMaster("yarn")
          // 设置resourcemanager的ip
          .set("yarn.resourcemanager.hostname","master")
          // 设置executor的个数
          .set("spark.executor.instance","2")
          // 设置executor的内存大小
          .set("spark.executor.memory", "1024M")
          // 设置提交任务的yarn队列
          .set("spark.yarn.queue","spark")
          // 设置driver的ip地址
          .set("spark.driver.host","192.168.17.1")
          // 设置jar包的路径,如果有其他的依赖包,可以在这里添加,逗号隔开
          .setJars(List("D:\develop_soft\idea_workspace_2018\sparkdemo\target\sparkdemo-1.0-SNAPSHOT.jar"
        ))
        conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
        val scc = new StreamingContext(conf, Seconds(1))
        scc.sparkContext.setLogLevel("WARN")
        //scc.checkpoint("/spark/checkpoint")
        val topic = "jason_flink"
        val topicSet = Set(topic)
        val kafkaParams = Map[String, Object](
          "auto.offset.reset" -> "latest",
          "value.deserializer" -> classOf[StringDeserializer]
          , "key.deserializer" -> classOf[StringDeserializer]
          , "bootstrap.servers" -> "master:9092,storm1:9092,storm2:9092"
          , "group.id" -> "jason_"
          , "enable.auto.commit" -> (true: java.lang.Boolean)
        )
        kafkaStreams = KafkaUtils.createDirectStream[String, String](
          scc,
          LocationStrategies.PreferConsistent,
          ConsumerStrategies.Subscribe[String, String](topicSet, kafkaParams))
        kafkaStreams.foreachRDD(rdd=> {
          if (!rdd.isEmpty()) {
            rdd.foreachPartition(fp=> {
              fp.foreach(f=> {
                println(f.value().toString)
              })
            })
          }
        })
        scc.start()
        scc.awaitTermination()
      }
    }
    

    然后我们直接右键运行,看下打印的日志

    
    19/08/16 23:17:24 INFO SparkContext: Running Spark version 2.2.0
    19/08/16 23:17:25 INFO SparkContext: Submitted application: WordCount
    19/08/16 23:17:25 INFO SecurityManager: Changing view acls to: JasonLee,root
    19/08/16 23:17:25 INFO SecurityManager: Changing modify acls to: JasonLee,root
    19/08/16 23:17:25 INFO SecurityManager: Changing view acls groups to: 
    19/08/16 23:17:25 INFO SecurityManager: Changing modify acls groups to: 
    19/08/16 23:17:25 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(JasonLee, root); groups with view permissions: Set(); users  with modify permissions: Set(JasonLee, root); groups with modify permissions: Set()
    19/08/16 23:17:26 INFO Utils: Successfully started service 'sparkDriver' on port 62534.
    19/08/16 23:17:26 INFO SparkEnv: Registering MapOutputTracker
    19/08/16 23:17:26 INFO SparkEnv: Registering BlockManagerMaster
    19/08/16 23:17:26 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
    19/08/16 23:17:26 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
    19/08/16 23:17:26 INFO DiskBlockManager: Created local directory at C:UsersjasonAppDataLocalTemplockmgr-6ec3ae57-661d-4974-8bc9-7357ab4a0c06
    19/08/16 23:17:26 INFO MemoryStore: MemoryStore started with capacity 4.1 GB
    19/08/16 23:17:26 INFO SparkEnv: Registering OutputCommitCoordinator
    19/08/16 23:17:26 INFO log: Logging initialized @2170ms
    19/08/16 23:17:26 INFO Server: jetty-9.3.z-SNAPSHOT
    19/08/16 23:17:26 INFO Server: Started @2236ms
    19/08/16 23:17:26 INFO AbstractConnector: Started ServerConnector@4a534663{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}
    19/08/16 23:17:26 INFO Utils: Successfully started service 'SparkUI' on port 4040.
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@427b5f92{/jobs,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@1991f767{/jobs/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@4c6daf0{/jobs/job,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@2488b073{/jobs/job/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@55787112{/stages,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@7db82169{/stages/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@f74e835{/stages/stage,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@19fe4644{/stages/stage/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@5be067de{/stages/pool,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@18245eb0{/stages/pool/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@24fb6a80{/storage,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@72a85671{/storage/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@18f20260{/storage/rdd,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@7a48e6e2{/storage/rdd/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@3a94964{/environment,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@6d0b5baf{/environment/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@2a3591c5{/executors,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@346a361{/executors/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@1643d68f{/executors/threadDump,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@2e029d61{/executors/threadDump/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@4052274f{/static,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@24faea88{/,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@64beebb7{/api,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@29ef6856{/jobs/job/kill,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@3faf2e7d{/stages/stage/kill,null,AVAILABLE,@Spark}
    19/08/16 23:17:26 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.17.1:4040
    19/08/16 23:17:26 INFO SparkContext: Added JAR D:develop_softidea_workspace_2018sparkdemo	argetsparkdemo-1.0-SNAPSHOT.jar at spark://192.168.17.1:62534/jars/sparkdemo-1.0-SNAPSHOT.jar with timestamp 1565968646369
    19/08/16 23:17:27 INFO RMProxy: Connecting to ResourceManager at master/192.168.17.142:8032
    19/08/16 23:17:27 INFO Client: Requesting a new application from cluster with 2 NodeManagers
    19/08/16 23:17:27 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (8192 MB per container)
    19/08/16 23:17:27 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
    19/08/16 23:17:27 INFO Client: Setting up container launch context for our AM
    19/08/16 23:17:27 INFO Client: Setting up the launch environment for our AM container
    19/08/16 23:17:27 INFO Client: Preparing resources for our AM container
    19/08/16 23:17:28 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
    19/08/16 23:17:31 INFO Client: Uploading resource file:/C:/Users/jason/AppData/Local/Temp/spark-7ed16f4e-0f99-44cf-8553-b4541337d0f0/__spark_libs__5037580728569655338.zip -> hdfs://master:9000/user/root/.sparkStaging/application_1565990507758_0020/__spark_libs__5037580728569655338.zip
    19/08/16 23:17:34 INFO Client: Uploading resource file:/C:/Users/jason/AppData/Local/Temp/spark-7ed16f4e-0f99-44cf-8553-b4541337d0f0/__spark_conf__5359714098313821798.zip -> hdfs://master:9000/user/root/.sparkStaging/application_1565990507758_0020/__spark_conf__.zip
    19/08/16 23:17:34 INFO SecurityManager: Changing view acls to: JasonLee,root
    19/08/16 23:17:34 INFO SecurityManager: Changing modify acls to: JasonLee,root
    19/08/16 23:17:34 INFO SecurityManager: Changing view acls groups to: 
    19/08/16 23:17:34 INFO SecurityManager: Changing modify acls groups to: 
    19/08/16 23:17:34 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(JasonLee, root); groups with view permissions: Set(); users  with modify permissions: Set(JasonLee, root); groups with modify permissions: Set()
    19/08/16 23:17:34 INFO Client: Submitting application application_1565990507758_0020 to ResourceManager
    19/08/16 23:17:34 INFO YarnClientImpl: Submitted application application_1565990507758_0020
    19/08/16 23:17:34 INFO SchedulerExtensionServices: Starting Yarn extension services with app application_1565990507758_0020 and attemptId None
    19/08/16 23:17:35 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
    19/08/16 23:17:35 INFO Client: 
       client token: N/A
       diagnostics: AM container is launched, waiting for AM container to Register with RM
       ApplicationMaster host: N/A
       ApplicationMaster RPC port: -1
       queue: spark
       start time: 1565997454105
       final status: UNDEFINED
       tracking URL: http://master:8088/proxy/application_1565990507758_0020/
       user: root
    19/08/16 23:17:36 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
    19/08/16 23:17:37 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
    19/08/16 23:17:38 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
    19/08/16 23:17:39 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
    19/08/16 23:17:40 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(spark-client://YarnAM)
    19/08/16 23:17:40 INFO YarnClientSchedulerBackend: Add WebUI Filter. org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter, Map(PROXY_HOSTS -> master, PROXY_URI_BASES -> http://master:8088/proxy/application_1565990507758_0020), /proxy/application_1565990507758_0020
    19/08/16 23:17:40 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter
    19/08/16 23:17:40 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
    19/08/16 23:17:41 INFO Client: Application report for application_1565990507758_0020 (state: RUNNING)
    19/08/16 23:17:41 INFO Client: 
       client token: N/A
       diagnostics: N/A
       ApplicationMaster host: 192.168.17.145
       ApplicationMaster RPC port: 0
       queue: spark
       start time: 1565997454105
       final status: UNDEFINED
       tracking URL: http://master:8088/proxy/application_1565990507758_0020/
       user: root
    19/08/16 23:17:41 INFO YarnClientSchedulerBackend: Application application_1565990507758_0020 has started running.
    19/08/16 23:17:41 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 62586.
    19/08/16 23:17:41 INFO NettyBlockTransferService: Server created on 192.168.17.1:62586
    19/08/16 23:17:41 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
    19/08/16 23:17:41 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.17.1, 62586, None)
    19/08/16 23:17:41 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.17.1:62586 with 4.1 GB RAM, BlockManagerId(driver, 192.168.17.1, 62586, None)
    19/08/16 23:17:41 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.17.1, 62586, None)
    19/08/16 23:17:41 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 192.168.17.1, 62586, None)
    19/08/16 23:17:41 INFO ContextHandler: Started o.s.j.s.ServletContextHandler@3bb9ca38{/metrics/json,null,AVAILABLE,@Spark}
    19/08/16 23:17:44 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (192.168.17.145:40622) with ID 1
    19/08/16 23:17:44 INFO BlockManagerMasterEndpoint: Registering block manager storm1:44607 with 366.3 MB RAM, BlockManagerId(1, storm1, 44607, None)
    19/08/16 23:17:48 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (192.168.17.147:58232) with ID 2
    19/08/16 23:17:48 INFO YarnClientSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8
    19/08/16 23:17:48 INFO BlockManagerMasterEndpoint: Registering block manager storm2:34000 with 366.3 MB RAM, BlockManagerId(2, storm2, 34000, None)
    19/08/16 23:17:49 WARN KafkaUtils: overriding enable.auto.commit to false for executor
    19/08/16 23:17:49 WARN KafkaUtils: overriding auto.offset.reset to none for executor
    19/08/16 23:17:49 WARN KafkaUtils: overriding executor group.id to spark-executor-jason_
    19/08/16 23:17:49 WARN KafkaUtils: overriding receive.buffer.bytes to 65536 see KAFKA-3135
    

    看到提交成功了,然后我们打开yarn的监控页面看下有没有job。
    在这里插入图片描述

    看到有一个spark程序在运行,然后我们点进去,看下具体的运行情况:
    在这里插入图片描述

    选择一下job,看下executor打印的日志

    在这里插入图片描述

    写到kafka的数据,没什么问题,停止的时候,只需要在idea里面点击停止程序就可以了,这样测试起来就会方便很多.

    2.运行过程中可能会遇到的问题

    2.1首先需要把yarn-site.xml,core-site.xml,hdfs-site.xml放到resource下面,因为程序运行的时候需要这些环境

    2.2权限问题

    Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=JasonLee, access=WRITE, inode="/user":root:supergroup:drwxr-xr-x
      at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:342)
      at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:251)
      at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:189)
      at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1744)
      at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1728)
      at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1687)
      at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:60)
      at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2980)
      at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1096)
      at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:652)
      at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
      at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:503)
      at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989)
      at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:868)
      at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:814)
      at java.security.AccessController.doPrivileged(Native Method)
      at javax.security.auth.Subject.doAs(Subject.java:422)
      at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1886)
      at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2603)
    

    这个是因为在本地提交的所以用户名是JasonLee,它没有访问hdfs的权限,最简单的解决方法就是在代码里面设置用户是root。

    System.setProperty("HADOOP_USER_NAME", "root")
    

    2.3缺失环境变量

    
    Exception in thread "main" java.lang.IllegalStateException: Library directory 'D:develop_softidea_workspace_2018sparkdemoassembly	argetscala-2.11jars' does not exist; make sure Spark is built.
      at org.apache.spark.launcher.CommandBuilderUtils.checkState(CommandBuilderUtils.java:248)
      at org.apache.spark.launcher.CommandBuilderUtils.findJarsDir(CommandBuilderUtils.java:347)
      at org.apache.spark.launcher.YarnCommandBuilderUtils$.findJarsDir(YarnCommandBuilderUtils.scala:38)
      at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:526)
      at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:814)
      at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:169)
      at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
      at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
      at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
      at org.apache.spark.streaming.StreamingContext$.createNewSparkContext(StreamingContext.scala:839)
      at org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:85)
      at spark.RemoteSubmitApp$.main(RemoteSubmitApp.scala:31)
      at spark.RemoteSubmitApp.main(RemoteSubmitApp.scala)
    

    这个报错是因为我们没有配置SPARK_HOME的环境变量,直接在idea里面的configurations里面的environment variables里面设置SPARK_HOME就可以了,如下图所示:
    在这里插入图片描述

    2.4 没有设置driver的ip

    9/08/17 07:52:45 ERROR ApplicationMaster: Failed to connect to driver at 169.254.42.204:64010, retrying ...
    19/08/17 07:52:48 ERROR ApplicationMaster: Failed to connect to driver at 169.254.42.204:64010, retrying ...
    19/08/17 07:52:48 ERROR ApplicationMaster: Uncaught exception: 
    org.apache.spark.SparkException: Failed to connect to driver!
      at org.apache.spark.deploy.yarn.ApplicationMaster.waitForSparkDriver(ApplicationMaster.scala:577)
      at org.apache.spark.deploy.yarn.ApplicationMaster.runExecutorLauncher(ApplicationMaster.scala:433)
      at org.apache.spark.deploy.yarn.ApplicationMaster.run(ApplicationMaster.scala:256)
      at org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$main$1.apply$mcV$sp(ApplicationMaster.scala:764)
      at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:67)
      at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:66)
      at java.security.AccessController.doPrivileged(Native Method)
      at javax.security.auth.Subject.doAs(Subject.java:422)
      at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1692)
      at org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:66)
      at org.apache.spark.deploy.yarn.ApplicationMaster$.main(ApplicationMaster.scala:762)
      at org.apache.spark.deploy.yarn.ExecutorLauncher$.main(ApplicationMaster.scala:785)
      at org.apache.spark.deploy.yarn.ExecutorLauncher.main(ApplicationMaster.scala)
    

    这个报错是因为没有设置driver host,因为我们运行的是yarn-client模式,driver就是我们的本机,所以要设置本地的ip,不然找不到driver.

    .set("spark.driver.host","192.168.17.1")
    

    2.5保证自己的电脑和虚拟机在同一个网段内,而且要关闭自己电脑的防火墙,不然可能会出现连接不上的情况.

  • 相关阅读:
    5.2-5.3
    5.1封装
    阅读《构建之法》 5-7章
    做汉堡
    阅读《构建之法》1-5章
    结对 四则运算
    回答
    读后感
    提问*2
    提问1
  • 原文地址:https://www.cnblogs.com/aixing/p/13327351.html
Copyright © 2020-2023  润新知