• Spark Streaming状态管理函数updateStateByKey和mapWithState




    相关内容原文地址:

    SparkStreaming之解析mapWithState
    Spark Streaming状态管理函数
    updateStateByKey和mapWithState
    SparkStreaming之mapWithState



    一、状态管理函数

    Spark Streaming中状态管理函数包括updateStateByKey和mapWithState,都是用来统计全局key的状态的变化的。它们以DStream中的数据进行按key做reduce操作,然后对各个批次的数据进行累加,在有新的数据信息进入或更新时。能够让用户保持想要的不论什么状。

    二、mapWithState

    2.1关于mapWithState

    mapWithState也会统计全局的key的状态,但是如果没有数据输入,便不会返回之前的key的状态,类似于增量的感觉。

    需要自己写一个匿名函数func来实现自己想要的功能。如果有初始化的值得需要,可以使用initialState(RDD)来初始化key的值。 另外,还可以指定timeout函数,该函数的作用是,如果一个key超过timeout设定的时间没有更新值,那么这个key将会失效。这个控制需要在func中实现,必须使用state.isTimingOut()来判断失效的key值。如果在失效时间之后,这个key又有新的值了,则会重新计算。如果没有使用isTimingOut,则会报错。

    2.2mapWithState示例Scala:

    package spark2x
    
    import org.apache.spark.sql.SparkSession
    import org.apache.spark.streaming.dstream.{DStream, MapWithStateDStream, ReceiverInputDStream}
    import org.apache.spark.streaming.{Seconds, State, StateSpec, StreamingContext}
    
    object MapWithState {
      // 设置本地运行模式
      def main(args: Array[String]): Unit = {
        val spark = SparkSession.builder()
          .master("local[2]")
          .appName("MapWithState")
          .getOrCreate()
    
        // 创建一个context,批次间隔为2秒钟,
        val ssc: StreamingContext = new StreamingContext(spark.sparkContext, Seconds(3))
    
        // 设置checkpoint目录
        ssc.checkpoint(".")
    
        // 创建一个ReceiverInputDStream,从服务器端的netcat接收数据。
        // 服务器主机名SC01(SC01已在Window上的hosts文件中做了映射,没做映射的则写ip就OK了),监听端口为6666
        val line: ReceiverInputDStream[String] = ssc.socketTextStream("SC01", 6666)
    
        // 对接收到的数据进行处理,进行切割,分组形式为(day, 1) (word 1)
        val wordsStream: DStream[(String, Int)] = line.flatMap(_.split(" ")).map((_, 1))
    
        val wordCount: MapWithStateDStream[String, Int, Int, Any] = wordsStream.mapWithState(StateSpec.function(func).timeout(Seconds(30)))
    
    	// 打印
        wordCount.print()
    	// 提交
        ssc.start()
    	// 
        ssc.awaitTermination()
      }
    
      /**
        * 定义一个函数,该函数有三个类型word: String, option: Option[Int], state: State[Int]
        * 其中word代表统计的单词,option代表的是历史数据,state代表的是返回的状态
        */
      val func = (word: String, option: Option[Int], state: State[Int]) => {
        if(state.isTimingOut()){
          println(word + "is timeout")
        }else{
          // 获取历史数据,当前值加上上一个批次的该状态的值
          val sum = option.getOrElse(0) + state.getOption().getOrElse(0)
          // 单词和该单词出现的频率
          val wordFreq = (word, sum)
          // 更新状态
          state.update(sum)
          wordFreq
        }
      }
    }
    

    mapWithState它会按照时间线在每一个批次间隔返回之前的发生改变的或者新的key的状态,不发生变化的不返回。同时mapWithState可以不用设置checkpoint,返回的数据量少,性能和效率都比mapWithState好。

    2.3mapWithState算子应用示例

    import org.apache.spark.SparkConf
    import org.apache.spark.streaming.{Seconds, State, StateSpec, StreamingContext}
    
    object MapWithStateApp {
      def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName("MapWithStateApp")
        val ssc = new StreamingContext(conf,Seconds(5))
        ssc.checkpoint("hdfs://192.168.137.251:9000/spark/data")
        val lines = ssc.socketTextStream("hadoop000",9999)
        val words = lines.flatMap(_.split(" "))
        val pairs = words.map(x=>(x,1)).reduceByKey(_+_)
        // Update the cumulative count using mapWithState
        // This will give a DStream made of state (which is the cumulative count of the words)
        val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
          val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
          val output = (word, sum)
          state.update(sum)
          output
        }
    
        val wordcounts = pairs.mapWithState(StateSpec.function(mappingFunc))
        wordcounts.print()
        ssc.start()
        ssc.awaitTermination()
      }
    }
    

    2.4mapWithState应用示例

    package stateParse
    
    import org.apache.spark.streaming._
    import org.apache.spark.{SparkConf, SparkContext}
    
    /**
    	* Author: shawn pross
    	* Date: 2018/09/10
    	* Description: 
    	*/
    object TestMapWithState {
    	def main(args: Array[String]): Unit = {
    		val conf = new SparkConf()
    		conf.setAppName(s"${this.getClass.getSimpleName}")
    		conf.setMaster("local[2]")
    		val sc = new SparkContext(conf)
    		val ssc = new StreamingContext(sc, Seconds(3))
    		ssc.checkpoint("/checkpoint/")
    
    		val line = ssc.socketTextStream("127.0.0.1",9999)
    		val wordDStream = line.flatMap(_.split(",")).map(x=>(x,1))
    
    		//状态更新函数,output是输出,state是状态
    		val mappingFunc = (userId:String,value:Option[Int],state:State[Int])=>{
    			val sum= value.getOrElse(0) + state.getOption().getOrElse(0)
    			val output = (userId,sum)
    			state.update(sum)
    			output
    		}
    
    		//通过mapWithState更新状态,设置状态超时时间为1小时
    		val stateDStream = wordDStream.mapWithState(StateSpec.function(mappingFunc).timeout(Minutes(60))).print()
    
    		ssc.start()
    		ssc.awaitTermination()
    	}
    }
    

    mapWithState接收的参数是一个StateSpec对象,在StateSpec中封装了状态管理的函数。我们定义了一个状态更新函数mappingFunc,该函数会更新指定用户的状态,同时会返回更新后的状态,将该函数传给mapWithState,并设置状态超时时间。SparkStreaming通过根据我们定义的更新函数,在每个计算时间间隔内更新内部维护的状态,同时返回经过mappingFunc处理后的结果数据流。

    2.5SparkStreaming之mapWithState

    与updateStateByKey方法相比,使用mapWithState方法能够得到6倍的低延迟的同时维护的key状态的数量要多10倍,这一性能的提升和扩展性可以从基准测试结果得到验证,所有的结果全部在实践间隔为1秒的batch和相同大小的集群中生成。

    下图比较的是mapWithState方法和updateStateByKey方法处理1秒的batch所消耗的平均时间。在本例子中,我们为同样数量的的key(0.25-1百万)保存状态,然后已同意的速率(30个更新/s)对其进行更新。可以看到mapWithState方法比updateStateByKey方法快了8倍,从而允许更低的端到端的延迟。
    在这里插入图片描述

    package com.llcc.sparkSql.MyTimeSort
    
    import org.apache.spark.streaming.StreamingContext
    import org.apache.spark.SparkConf
    import org.apache.spark.streaming.Seconds
    import org.apache.spark.streaming.StateSpec
    import org.apache.spark.streaming.State
    
    object MapWithStateDemo {
      def main(args: Array[String]): Unit = {
        /**
          * local[1]  中括号里面的数字都代表的是启动几个工作线程
          * 默认情况下是一个工作线程。那么做为sparkstreaming 我们至少要开启
          * 两个线程,因为其中一个线程用来接收数据,这样另外一个线程用来处理数据。
          */
        val conf=new SparkConf().setMaster("local[2]").setAppName("MapWithStateDemo")
        /**
          * Seconds  指的是每次数据数据的时间范围 (bacth interval)
          */
        val  ssc=new StreamingContext(conf,Seconds(2));
        ssc.checkpoint(".")
    
        val fileDS=ssc.socketTextStream("hadoop1", 9999)
        val wordDstream =fileDS.flatMap { line => line.split("	") }
          .map { word => (word,1) }
    
    
        /**
          * word: String, one: Option[Int], state: State[Int]
          * 这个函数里面有三个参数
          * 第一个参数:word: String  代表的就是key
          * 第二个参数:one: Option[Int] 代表的就是value
          * 第三个参数:state: State[Int] 代表的就是状态(历史状态,也就是上次的结果)
          *
          * hello,4
          *
          * hello,1
          *
          * hello,5
          */
        val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
          val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
          val output = (word, sum)
          state.update(sum)
          output
        }
    
        val initialRDD = ssc.sparkContext.parallelize(List(("hello", 1), ("world", 1)))
        /**
          * hello,1
          * hello,2
          * world,2
          */
        val stateDstream = wordDstream.mapWithState(
          StateSpec.function(mappingFunc).initialState(initialRDD))
    
        /**
          * 打印RDD里面前十个元素
          */
        //  wordcount.print()
        stateDstream.print();
        //启动应用
        ssc.start()
        //等待任务结束
        ssc.awaitTermination()
      }
    }
    
    

    三、updateStateByKey

    3.1关于updateStateByKey

    updateStateByKey可以在指定的批次间隔内返回之前的全部历史数据,包括新增的,改变的和没有改变的。由于updateStateByKey在使用的时候一定要做checkpoint,当数据量过大的时候,checkpoint会占据庞大的数据量,会影响性能,效率不高。

    3.2updateStateByKey示例Scala:

    package spark2x
     
    import org.apache.spark.SparkContext
    import org.apache.spark.sql.SparkSession
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
    
    object UpdateStateByKeyDemo {
      def main(args: Array[String]): Unit = {
        /** 第一步:配置SparkConf:
          * 1,至少2条线程:因为Spark Streaming应用程序在运行的时候,至少有一条
          * 线程Receiver用于不断的循环接收数据,还有一条线程是Executor用于处理接受的数据(少于两条
          * 就没有线程用于处理数据,窗口不会显示数据。并且随着时间的推移,内存和磁盘由于负担过重而崩溃);
          * 2,对于集群而言,根据已有经验,大概5个左右的Core是性能最佳(一般分配为奇数个Core)
          */
         val spark = SparkSession.builder()
          .master("local[2]")
          .appName("UpdateStateByKeyDemo")
          .getOrCreate()
        val conf: SparkContext = spark.sparkContext
        /**
          * 第二步:创建SparkStreamingContext:
          * 1,这个是SparkStreaming应用程序所有功能的起始点和程序调度的核心
          * SparkStreamingContext的构建可以基于SparkConf参数,也可基于持久化的SparkStreamingContext的内容
          * 来恢复过来(典型的场景是Driver崩溃后重新启动,由于Spark Streaming具有连续7*24小时不间断运行的特征,
          * 所有需要在Driver重新启动后继续上衣系的状态,此时的状态恢复需要基于曾经的Checkpoint);
          * 2,在一个Spark Streaming应用程序中可以创建若干个SparkStreamingContext对象,使用下一个SparkStreamingContext
          * 之前需要把前面正在运行的SparkStreamingContext对象关闭掉,由此,我们获得一个重大的启发SparkStreaming框架也只是
          * Spark Core上的一个应用程序而已,只不过Spark Streaming框架箱运行的话需要Spark工程师写业务逻辑处理代码;
          */
        val ssc: StreamingContext = new StreamingContext(conf, Seconds(3))
        //报错解决办法做checkpoint,开启checkpoint机制,把checkpoint中的数据放在这里设置的目录中,生产环境下一般放在HDFS中
        ssc.checkpoint("hdfs://SC01:8020/user/tmp/cp-20181201")
    
        /**
          * 第三步:创建Spark Streaming输入数据来源input Stream:
          * 1,数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等
          * 2, 在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口
          * 的数据(当然该端口服务首先必须存在),并且在后续会根据业务需要不断的有数据产生(当然对于Spark Streaming
          * 应用程序的运行而言,有无数据其处理流程都是一样的);
          * 3,如果经常在每间隔5秒钟没有数据的话不断的启动空的Job其实是会造成调度资源的浪费,因为并没有数据需要发生计算,所以
          * 实例的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;
          */
        val line: ReceiverInputDStream[String] = ssc.socketTextStream("SC01", 6666)
    
        /**
          * 第四步:接下来就像对于RDD编程一样基于DStream进行编程!!!原因是DStream是RDD产生的模板(或者说类),在Spark Streaming具体
          * 发生计算前,其实质是把每个Batch的DStream的操作翻译成为对RDD的操作!!!
          * 对初始的DStream进行Transformation级别的处理,例如map、filter等高阶函数等的编程,来进行具体的数据计算
          * 进行单词拆分
          */
        val words: DStream[String] = line.flatMap(_.split(" "))
    
        /**
          * 对初始的DStream进行Transformation级别的处理,例如map、filter等高阶函数等的编程,来进行具体的数据计算
          * 单词分组计数实,word => (word, 1) Word ->(word, 1) day -> day(day, 1)
          */
        val pairs: DStream[(String, Int)] = words.map((_, 1))
    
        /**
          * 通过updateStateByKey来以Batch Interval为单位来对历史状态进行更新,
          * 这是功能上的一个非常大的改进,否则的话需要完成同样的目的,就可能需要把数据保存在Redis、
          * Tagyon或者HDFS或者HBase或者数据库中来不断的完成同样一个key的State更新,如果你对性能有极为苛刻的要求,
          * 且数据量特别大的话,可以考虑把数据放在分布式的Redis或者Tachyon内存文件系统中;
          * Spark2.X后mapWithState应该非常稳定了。
          */
        val wordCount: DStream[(String, Int)] = pairs.updateStateByKey((values: Seq[Int], state: Option[Int]) => {
          var newValue = state.getOrElse(0)
          for (value <- values) {
            newValue += value
          }
          Option(newValue)
        })
    
        /**
          * 此处的print并不会直接出发Job的执行,因为现在的一切都是在Spark Streaming框架的控制之下的,对于Spark Streaming
          * 是否触发真正的Job运行是基于设置的Duration时间间隔的
          * 需要注意的是Spark Streaming应用程序要想执行具体的Job,对Dtream就必须有output Stream操作,
          * output Stream有很多类型的函数触发,类print、saveAsTextFile、saveAsHadoopFiles等,最为重要的一个
          * 方法是foraeachRDD,因为Spark Streaming处理的结果一般都会放在Redis、DB、DashBoard等上面,foreachRDD
          * 主要就是用用来完成这些功能的,而且可以随意的自定义具体数据到底放在哪里!!!
          */
        wordCount.print()
    
        /**
      * Spark Streaming执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于
      * 接受应用程序本身或者Executor中的消息;
          */
        // 开始提交任务
        ssc.start()
        // 线程等待,等待处理下一批次任务
        ssc.awaitTermination()
      }
    
        /** Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)]
          * 在调用updateStateByKey中,需要传入一个用于计算历史批次和当前批次数据的函数
          * 该函数中有几个类型:String, Seq[Int], Option[Int])]
          * String代表元组中每一个单词,也就是key
          * Seq[Int]代表当前批次相同key对应的value,比如Seq(1,1,1,1)
          * Option[Int]代表上一批次中相同key对应的累加的结果,有可能有值,有可能没有值。
          * 此时,获取历史批次的数据时,最好用getOrElse方法
          */
      val func = (it: Iterator[(String, Seq[Int], Option[Int])]) => {
        it.map(tup => {
          (tup._1, tup._2.sum + tup._3.getOrElse(0))
        })
      }
    }
    
    

    四、updateStateByKey和mapWithState的区别

    updateStateByKey可以在指定的批次间隔内返回之前的全部历史数据,包括新增的,改变的和没有改变的。由于updateStateByKey在使用的时候一定要做checkpoint,当数据量过大的时候,checkpoint会占据庞大的数据量,会影响性能,效率不高。

    mapWithState只返回变化后的key的值,这样做的好处是,我们可以只是关心那些已经发生的变化的key,对于没有数据输入,则不会返回那些没有变化的key的数据。这样的话,即使数据量很大,checkpoint也不会像updateStateByKey那样,占用太多的存储,效率比较高(再生产环境中建议使用这个)。

    4.1适用场景

    updateStateByKey可以用来统计历史数据。例如统计不同时间段用户平均消费金额,消费次数,消费总额,网站的不同时间段的访问量等指标

    mapWithState可以用于一些实时性较高,延迟较少的一些场景,例如你在某宝上下单买了个东西,付款之后返回你账户里的余额信息。

  • 相关阅读:
    fixed与sticky的区别
    自我介绍以及web课程目标
    DOM&BOM
    web中常用单位的使用
    Oracle 使用 DBLINK详解(转载) 挪威
    Sql server 无法删除用户的处理办法(转载) 挪威
    ICMP类型
    makefile笔记
    [笔记]Makefile wildcard
    在Visual Studio 2005下配置WinPcap开发环境
  • 原文地址:https://www.cnblogs.com/aixing/p/13327279.html
Copyright © 2020-2023  润新知