• PolynomialFeatures 多项式特征


    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/12692113.html

    先看一个非线性的图例

    准备数据

    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.linear_model import LinearRegression
    
    # 准备数据
    n_dots = 500
    X = np.linspace(-2 * np.pi, 2 * np.pi, n_dots)
    y = np.sin(X) + 0.2 * np.random.rand(n_dots) - 0.1
    plt.figure(figsize=(12, 8))
    plt.scatter(X, y)

    建模训练

    # 建模训练
    lr_model = LinearRegression()
    X = X.reshape(-1, 1)
    y = y.reshape(-1, 1)
    lr_model.fit(X, y)

    评估模型

    # 评估模型
    score = lr_model.score(X, y)
    # 0.1483186188130836
    score
    
    plt.figure(figsize=(12, 8))
    plt.scatter(X, y)
    plt.plot(X, lr_model.predict(X), 'r')

    可以看到,这个模型非常的欠拟合,解决办法:构建多项式特征(在原有特征的基础上进行变换得到的特征),使用多项式回归,设置当前degree为5

    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.pipeline import Pipeline
    
    
    def polynomial_model(degree=1):
        polynomial_features = PolynomialFeatures(degree=degree, include_bias=False, interaction_only=False)
        linear_regression = LinearRegression(normalize=True)
        pipeline = Pipeline([('polynomial_features', polynomial_features), ('linear_regression', linear_regression)])
        return pipeline
    
    
    p_model = polynomial_model(5)
    p_model.fit(X, y)
    # 0.8975264192138223
    p_model.score(X, y)
    
    # array([-0.01237697])
    print(p_model.named_steps['linear_regression'].intercept_)
    # array([[6.36480157e-01, 5.50468654e-04, -7.14408527e-02, -2.36530821e-06, 1.46670352e-03]])
    print(p_model.named_steps['linear_regression'].coef_)
    
    plt.scatter(X, y)
    plt.plot(X, p_model.predict(X), 'r')

    可以看到,当模型是5阶的时候,已经有了很好的改善。

    分别设置degree为 1,2,3,5,7,9

    degrees = [1, 2, 3, 5, 7, 9]
    results = []
    
    for i in degrees:
        model = polynomial_model(i)
        model.fit(X, y)
        print(model.score(X, y))
        results.append({'model': model})
    
    plt.figure(figsize=(16, 12))
    for i, result in enumerate(results):
        # print(result['model'])
        degree = result['model'].named_steps['polynomial_features'].degree
        plt.subplot(2, 3, i + 1)
        plt.xlim(-7, 7)
        plt.scatter(X, y, c='g')
        plt.plot(X, result['model'].predict(X), 'r', linewidth=3, label='degree: %d' % degree)
        plt.legend()

    Reference

    https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

    https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

  • 相关阅读:
    jquery ajax跨域取数据
    Python编写相关注意事项
    深入理解java.lang.String
    Java设计模式----迭代器模式
    Java设计模式----状态模式
    Java设计模式----观察者模式
    Java设计模式----适配器模式
    Java设计模式----外观模式
    Java设计模式----建造者模式
    Java设计模式----模板方法模式
  • 原文地址:https://www.cnblogs.com/agilestyle/p/12692113.html
Copyright © 2020-2023  润新知