• hdu 1757 A Simple Math Problem (矩阵快速幂)


    Description

    Lele now is thinking about a simple function f(x).

    If x < 10 f(x) = x.
    If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
    And ai(0<=i<=9) can only be 0 or 1 .

    Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.

    Input

    The problem contains mutiple test cases.Please process to the end of file.
    In each case, there will be two lines.
    In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
    In the second line , there are ten integers represent a0 ~ a9.

    Output

    For each case, output f(k) % m in one line.

    Sample Input

    10 9999
    1 1 1 1 1 1 1 1 1 1
    20 500
    1 0 1 0 1 0 1 0 1 0

    Sample Output

    45
    104


    这就算我写的第一道矩阵快速幂的题了!
    矩阵快速幂的给我的感觉就是先找规律,YY出一个n*n的矩阵,矩阵左边写一列数,矩阵右边写一列数。让矩阵乘上右边那一列数等于左边的那列数。盗张图!!

    然后......然后就没有然后了QWQ,输出答案就行了。
    代码如下:
     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 const int N=10;
     5 int k,m;
     6 struct Matrix//用结构体来存矩阵
     7 {
     8     long long int mat[N][N];//直接上long long int 别找事
     9 }matrix;
    10 void init()
    11 {
    12     for (int i=0;i<N;++i)
    13     scanf("%lld",&matrix.mat[0][i]);
    14     for (int i=1;i<N;++i)
    15     {
    16         for (int j=0;j<N;++j)
    17         {
    18             if (i==j+1)
    19             matrix.mat[i][j]=1;
    20             else
    21             matrix.mat[i][j]=0;
    22         }
    23     }
    24 }
    25 Matrix operator * (Matrix a,Matrix b)//定义乘号
    26 {
    27     Matrix c;
    28     for (int i=0;i<N;++i)
    29     {
    30         for (int j=0;j<N;++j)
    31         {
    32             c.mat[i][j]=0;//初始化值为0
    33             for (int k=0;k<N;++k)
    34             c.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
    35             c.mat[i][j]%=m;//记得取模,否则就炸了
    36         }
    37     }
    38     return c;
    39 }
    40 Matrix Pow (int n)//定义快速幂函数
    41 {
    42     Matrix t;
    43     if (n==1)
    44     return matrix;
    45     if (n&1)
    46     return matrix*Pow(n-1);
    47     else
    48     {
    49         Matrix temp=Pow(n>>1);
    50         return temp*temp;
    51     }
    52 }
    53 int main()
    54 {
    55     //freopen("de.txt","r",stdin);
    56     while (~scanf("%d%d",&k,&m))
    57     {
    58         init();
    59         if (k<10)
    60         {
    61             printf("%lld
    ",matrix.mat[0][k]%m);
    62             continue;
    63         }
    64         Matrix temp=Pow(k-9);
    65         long long int ans=0;
    66         for (int i=0;i<N;++i)
    67         {
    68             ans += temp.mat[0][i]*(N-i-1);
    69             ans%=m;
    70         }
    71         printf("%lld
    ",ans);
    72     }
    73     return 0;
    74 }


  • 相关阅读:
    运算符和表达式详解
    超实用的Java web面试题
    80道最新java基础部分面试题(七)
    80道最新java基础部分面试题(六)
    80道最新java基础部分面试题(五)
    12道算法与编程面试题
    javaee和javase的区别
    2019年最新50道java基础部分面试题(四)
    2019年最新50道java基础部分面试题(三)
    2019年最新50道java基础部分面试题(二)
  • 原文地址:https://www.cnblogs.com/agenthtb/p/6013196.html
Copyright © 2020-2023  润新知