• numpy opencv matlab eigen SVD结果对比


    参考

    https://zhuanlan.zhihu.com/p/26306568

    https://byjiang.com/2017/11/18/SVD/

    http://www.bluebit.gr/matrix-calculator/

    https://stackoverflow.com/questions/3856072/single-value-decomposition-implementation-c

    https://stackoverflow.com/questions/35665090/svd-matlab-implementation

    矩阵奇异值分解简介及C++/OpenCV/Eigen的三种实现

    https://blog.csdn.net/fengbingchun/article/details/72853757 

    numpy.linalg.svd 源码 

    https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html

    计算矩阵的特征值与特征向量的方法

    https://blog.csdn.net/Junerror/article/details/80222540 

    https://jingyan.baidu.com/article/27fa7326afb4c146f8271ff3.html

    不同的库计算结果不一致

    原因在于特征向量不唯一,特征值是唯一的

    来源

    https://stackoverflow.com/questions/35665090/svd-matlab-implementation

    Both are correct... The rows of the v you got from numpy are the eigenvectors of M.dot(M.T) (the transpose would be a conjugate transpose in the complex case). Eigenvectors are in the general case defined only up to a multiplicative constant, so you could multiply any row of v by a different number, and it will still be an eigenvector matrix.

    There is the additional constraint on v that it be a unitary matrix, which loosely translates to its rows being orthonormal. This reduces your available choices for every eigenvector to only 2: the normalized eigenvector pointing in either direction. But you still get to multiply any row by -1 and still have a valid v.

     

    A = U * S * V

    1 手动计算

    给定一个大小为2	imes 2的矩阵A=left[ egin{array}{cc} 4 & 4 \ -3 & 3 \ end{array} 
ight],虽然这个矩阵是方阵,但却不是对称矩阵,我们来看看它的奇异值分解是怎样的。

    AA^T=left[ egin{array}{cc} 32 & 0 \ 0 & 18 \ end{array} 
ight]进行对称对角化分解,得到特征值为lambda_1=32lambda_2=18,相应地,特征向量为vec{p}_1=left( 1,0 
ight) ^Tvec{p}_2=left(0,1
ight)^T;由A^TA=left[ egin{array}{cc} 25 & 7 \ 7 & 25 \ end{array} 
ight]进行对称对角化分解,得到特征值为lambda_1=32lambda_2=18

    当 lamda1 = 32

    AA.T  -  lamda1*E = [-7 7

             7 -7]  

    线性变换 【-1 1

         0 0】 

     -x1 + x2 = 0 

    x1 = 1 x2 = 1 特征向量为【1 1】.T  归一化为【1/sqrt(2), 1/sqrt(2)】

    x1 = -1 x2 = -1 特征向量为【-1 -1】.T  归一化为【-1/sqrt(2), -1/sqrt(2)】

    当 lamda2 = 18

    AA.T  -  lamda2*E = [7 7

             7 7]  

    线性变换 【1 1

         0 0】   

    x1 + x2 = 0 

    如果x1 = -1 x2 = 1 特征向量为【-1 1】.T  归一化为【-1/sqrt(2), 1/sqrt(2)】

    如果 x1 = 1 x2 = -1 特征向量为【-1 1】.T  归一化为【1/sqrt(2), -1/sqrt(2)】可见特征向量不唯一

    特征向量为vec{q}_1=left(frac{sqrt{2}}{2},frac{sqrt{2}}{2}
ight)^Tvec{q}_2=left(-frac{sqrt{2}}{2}, frac{sqrt{2}}{2}
ight)^T。取Sigma =left[ egin{array}{cc} 4sqrt{2} & 0 \ 0 & 3sqrt{2} \ end{array} 
ight],则矩阵A的奇异值分解为

    A=PSigma Q^T=left(vec{p}_1,vec{p}_2
ight)Sigma left(vec{q}_1,vec{q}_2
ight)^T

    =left[ egin{array}{cc} 1 & 0 \ 0 & 1 \ end{array} 
ight] left[ egin{array}{cc} 4sqrt{2} & 0 \ 0 & 3sqrt{2} \ end{array} 
ight] left[ egin{array}{cc} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} \ -frac{sqrt{2}}{2} & frac{sqrt{2}}{2} \ end{array} 
ight] =left[ egin{array}{cc} 4 & 4 \ -3 & 3 \ end{array} 
ight].

    2 MATLAB 结果与手动计算不同

    AB =  [[ 4 4 ],
      [-3   3 ]]
    [U,S,V] = svd(AB);
    U
    S
    V'#需要转置

    AB =

    4 4
    -3 3


    U =

    -1 0
    0 1


    S =

    5.6569 0
    0 4.2426


    V =

    -0.7071 -0.7071
    -0.7071 0.7071

    3 NUMPY结果与手动计算不同, 与matlab相同 它们都是调用lapack的svd分解算法。

    import numpy as np
    import math
    import cv2
    a = np.array([[4,4],[-3,3]])
    # a = np.random.rand(2,2) * 10
    print(a)
    u, d, v = np.linalg.svd(a)
    print(u)
    print(d)
    print(v)#不需要转置

    A = [[ 4 4]
    [-3 3]]

    U = 
    [[-1. 0.]
    [ 0. 1.]]

    S=
    [5.65685425 4.24264069]

    V=
    [[-0.70710678 -0.70710678]
    [-0.70710678 0.70710678]]

    4 opencv结果 与手动计算结果相同

    import numpy as np
    import math
    import cv2
    a = np.array([[4,4],[-3,3]],dtype=np.float32)
    # a = np.random.rand(2,2) * 10
    print(a)
    S1, U1, V1 = cv2.SVDecomp(a)
    print(U1)
    print(S1)
    print(V1)#不需要转置

    a = [[ 4. 4.]
    [-3. 3.]]
    U =

    [[0.99999994 0. ]
    [0. 1. ]]
    S = [[5.656854 ]
    [4.2426405]]

    V =

    [[ 0.70710677 0.70710677]
    [-0.70710677 0.70710677]]

    5  eigen结果与手动计算相同

    #include <iostream>
    #include <Eigen/SVD>
    #include <Eigen/Dense>  
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include "opencv2/imgproc/imgproc.hpp"
    #include <iostream>
     
    using namespace std;
    using namespace cv;
      
    //using Eigen::MatrixXf;  
    using namespace Eigen;  
    using namespace Eigen::internal;  
    using namespace Eigen::Architecture;  
    
    
    
    int GetEigenSVD(Mat &Amat, Mat &Umat, Mat &Smat, Mat &Vmat)
    {
    //-------------------------------svd测试    eigen
        Matrix2f A;
        A(0,0)=Amat.at<double>(0,0);
        A(0,1)=Amat.at<double>(0,1);
        A(1,0)=Amat.at<double>(1,0);
        A(1,1)=Amat.at<double>(1,1);
    
        JacobiSVD<Eigen::MatrixXf> svd(A, ComputeThinU | ComputeThinV );
        Matrix2f V = svd.matrixV(), U = svd.matrixU();
        Matrix2f S = U.inverse() * A * V.transpose().inverse(); // S = U^-1 * A * VT * -1
        //Matrix2f Arestore = U * S * V.transpose();
        // printeEigenMat(A ,"/sdcard/220/Ae.txt");
        // printeEigenMat(U ,"/sdcard/220/Ue.txt");
        // printeEigenMat(S ,"sdcard/220/Se.txt");
        // printeEigenMat(V ,"sdcard/220/Ve.txt");
        // printeEigenMat(U * S * V.transpose() ,"sdcard/220/U*S*VTe.txt");
    
        Umat.at<double>(0,0) = U(0,0);
        Umat.at<double>(0,1) = U(0,1);
        Umat.at<double>(1,0) = U(1,0);
        Umat.at<double>(1,1) = U(1,1);
        Vmat.at<double>(0,0) = V(0,0);
        Vmat.at<double>(0,1) = V(0,1);
        Vmat.at<double>(1,0) = V(1,0);
        Vmat.at<double>(1,1) = V(1,1);
        Smat.at<double>(0,0) = S(0,0);
        Smat.at<double>(0,1) = S(0,1);
        Smat.at<double>(1,0) = S(1,0);
        Smat.at<double>(1,1) = S(1,1);
        // Smat.at<double>(0,0) = S(0,0);
        // Smat.at<double>(0,1) = S(1,1);
        //-------------------------------svd测试    eigen
        
        return 0;
    }
    
    int main()
    {
        // egin();
        // opencv3();
        //Eigentest();
        //opencv();
        //similarityTest();
        // double data[2][2] = { { 629.70374,  245.4427 },
        // { -334.8119 ,  862.1787  } };
    
        double data[2][2] = { { 4, 4 },
        {-3, 3} };
        int dim  = 2;
        Mat A(dim,dim, CV_64FC1, data);
        Mat U(dim, dim, CV_64FC1);
        Mat V(dim, dim, CV_64FC1);
        Mat S(dim, dim, CV_64FC1);
        GetEigenSVD(A, U, S, V);
        Mat Arestore = U * S * V.t();
        cout <<A<<endl;
        cout <<Arestore<< endl;
        cout <<"U " << U<<endl;
        cout <<"S " <<S<<endl;
        cout <<"V " << V.t()<<endl;
        cout <<V<<endl;
    
        return 0;
    }

    [4, 4;
    -3, 3]

    U =

    [0.9999999403953552, 0;
    0, 0.9999999403953552]
    S = 

    [5.656854629516602, 0;
    0, 4.242640972137451]
    V =

    [0.7071067690849304, 0.7071067690849304;
    -0.7071067690849304, 0.7071067690849304]

    6 在线计算网站 与手动计算不同

    http://www.bluebit.gr/matrix-calculator/calculate.aspx

    Input matrix:

     4.000  4.000
    -3.000  3.000

    Singular Value Decomposition:

    U:

    -1.000  0.000
     0.000  1.000


    S:

    5.657 0.000
    0.000 4.243


    VT

    -0.707 -0.707
    -0.707  0.707
  • 相关阅读:
    群资料共享
    python 智能合约日志操作
    canvas绘制图片
    rgb随机变色
    直接用css生成三角形的问题
    纯css三层侧边栏效果
    清除浮动终极版本
    懒加载
    html5可以通用的几段代码
    jquery中animate()动画方法
  • 原文地址:https://www.cnblogs.com/adong7639/p/9269768.html
Copyright © 2020-2023  润新知