下载 http://dl.caffe.berkeleyvision.org/fcn32s-heavy-pascal.caffemodel
在opencv_contrib-3.2.0/modules/dnn/samples目录中找到下面的文件
fcn32s-heavy-pascal.prototxt
pascal-classes.txt
图片 space_shuttle.jpg
#include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> #include <opencv2/core/ocl.hpp> using namespace cv; using namespace cv::dnn; #include <fstream> #include <iostream> #include <cstdlib> using namespace std; static const string fcnType = "fcn32s"; static vector<cv::Vec3b> readColors(const string &filename = "pascal-classes.txt") { vector<cv::Vec3b> colors; ifstream fp(filename.c_str()); if (!fp.is_open()) { cerr << "File with colors not found: " << filename << endl; exit(-1); } string line; while (!fp.eof()) { getline(fp, line); if (line.length()) { stringstream ss(line); string name; ss >> name; int temp; cv::Vec3b color; ss >> temp; color[0] = temp; ss >> temp; color[1] = temp; ss >> temp; color[2] = temp; colors.push_back(color); } } fp.close(); return colors; } static void colorizeSegmentation(dnn::Blob &score, const vector<cv::Vec3b> &colors, cv::Mat &segm) { const int rows = score.rows(); const int cols = score.cols(); const int chns = score.channels(); cv::Mat maxCl(rows, cols, CV_8UC1); cv::Mat maxVal(rows, cols, CV_32FC1); for (int ch = 0; ch < chns; ch++) { for (int row = 0; row < rows; row++) { const float *ptrScore = score.ptrf(0, ch, row); uchar *ptrMaxCl = maxCl.ptr<uchar>(row); float *ptrMaxVal = maxVal.ptr<float>(row); for (int col = 0; col < cols; col++) { if (ptrScore[col] > ptrMaxVal[col]) { ptrMaxVal[col] = ptrScore[col]; ptrMaxCl[col] = ch; } } } } segm.create(rows, cols, CV_8UC3); for (int row = 0; row < rows; row++) { const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row); for (int col = 0; col < cols; col++) { ptrSegm[col] = colors[ptrMaxCl[col]]; } } } int main(int argc, char **argv) { cv::dnn::initModule(); //Required if OpenCV is built as static libs cv::ocl::setUseOpenCL(false); //OpenCL switcher String modelTxt = fcnType + "-heavy-pascal.prototxt"; String modelBin = fcnType + "-heavy-pascal.caffemodel"; String imageFile = (argc > 1) ? argv[1] : "space_shuttle.jpg"; vector<cv::Vec3b> colors = readColors(); //! [Create the importer of Caffe model] Ptr<dnn::Importer> importer; try //Try to import Caffe GoogleNet model { importer = dnn::createCaffeImporter(modelTxt, modelBin); } catch (const cv::Exception &err) //Importer can throw errors, we will catch them { cerr << err.msg << endl; } //! [Create the importer of Caffe model] if (!importer) { cerr << "Can't load network by using the following files: " << endl; cerr << "prototxt: " << modelTxt << endl; cerr << "caffemodel: " << modelBin << endl; cerr << fcnType << "-heavy-pascal.caffemodel can be downloaded here:" << endl; cerr << "http://dl.caffe.berkeleyvision.org/" << fcnType << "-heavy-pascal.caffemodel" << endl; exit(-1); } //! [Initialize network] dnn::Net net; importer->populateNet(net); importer.release(); //We don't need importer anymore //! [Initialize network] //! [Prepare blob] Mat img = imread(imageFile); if (img.empty()) { cerr << "Can't read image from the file: " << imageFile << endl; exit(-1); } resize(img, img, Size(500, 500)); //FCN accepts 500x500 RGB-images dnn::Blob inputBlob = dnn::Blob::fromImages(img); //Convert Mat to dnn::Blob batch of images //! [Prepare blob] //! [Set input blob] net.setBlob(".data", inputBlob); //set the network input //! [Set input blob] //! [Make forward pass] double t = (double)cv::getTickCount(); net.forward(); //compute output t = (double)cv::getTickCount() - t; printf("processing time: %.1fms ", t*1000./getTickFrequency()); //! [Make forward pass] //! [Gather output] dnn::Blob score = net.getBlob("score"); cv::Mat colorize; colorizeSegmentation(score, colors, colorize); cv::Mat show; cv::addWeighted(img, 0.4, colorize, 0.6, 0.0, show); cv::imshow("show", show); cv::waitKey(0); return 0; } //main