Boxes in a Line
You have n boxes in a line on the table numbered 1 . . . n from left to right. Your task is to simulate 4
kinds of commands:
• 1 X Y : move box X to the left to Y (ignore this if X is already the left of Y )
• 2 X Y : move box X to the right to Y (ignore this if X is already the right of Y )
• 3 X Y : swap box X and Y
• 4: reverse the whole line.
Commands are guaranteed to be valid, i.e. X will be not equal to Y .
For example, if n = 6, after executing 1 1 4, the line becomes 2 3 1 4 5 6. Then after executing
2 3 5, the line becomes 2 1 4 5 3 6. Then after executing 3 1 6, the line becomes 2 6 4 5 3 1.
Then after executing 4, then line becomes 1 3 5 4 6 2
Input
There will be at most 10 test cases. Each test case begins with a line containing 2 integers n, m(1 ≤ n, m ≤ 100, 000). Each of the following m lines contain a command.
Output
For each test case, print the sum of numbers at odd-indexed positions. Positions are numbered 1 to nfrom left to right.
Sample Input
6 41 1 4
2 3 5
3 1 6
4
6 3
1 1 4
2 3 5
3 1 6
100000 1
4
Sample Output
Case 1: 12Case 2: 9
Case 3: 2500050000
题意 开始有n个盒子按1到n的顺序排列 对这些盒子进行m次操作 每次为把x移到y的左边 右边 交换x,y 颠倒顺序中的一个
求操作完成后所有奇数位原盒子序号的和;
直接模拟肯定会超时 用stl中的链表也超时 只能用数组自己模拟一个双向链表了 le[i],ri[i]分别表示第i个盒子左边盒子的序号和右边盒子的序号 代码中有注释
#include<cstdio> #include<cstring> using namespace std; const int N = 100005; int le[N], ri[N], n, m; typedef long long ll; void link (int l, int r) //连接l和r,l在左边 { le[r] = l; ri[l] = r; } int main() { int cas = 0, op, x, y, t; while (scanf ("%d%d", &n, &m) != EOF) { for (int i = 1; i <= n; ++i) ri[i] = i + 1, le[i] = i - 1; ri[n] = 0, le[0] = n, ri[0] = 1; int flag = 0; //判断是否翻转 while (m--) { scanf ("%d", &op); if (op == 4) flag = !flag; else { scanf ("%d%d", &x, &y); if (flag && op != 3) op = 3 - op; //翻转后移动操作就相反了 if (ri[y] == x && op == 3) //方便后面判断交换是否相邻 t = x, x = y, y = t; if ( (op == 1 && le[y] == x) || (op == 2 && ri[y] == x)) continue; if (op == 1) //x移到y右边 link (le[x], ri[x]), link (le[y], x), link (x, y); else if (op == 2) //x移到y左边 link (le[x], ri[x]), link (x, ri[y]), link (y, x); else if (y == ri[x]) //op==3&&x,y相邻 link (le[x], y), link (x, ri[y]), link (y, x); else //不相邻 { int ry = ri[y], ly = le[y]; link (le[x], y), link (y, ri[x]), link (ly, x), link (x, ry); } } } t = 0; ll ans = 0; for (int i = 1; i <= n; ++i) { t = ri[t]; if (i % 2) ans += t; } if (n % 2 == 0 && flag) //n为偶数且翻转过 故求的恰为偶数位的和 ans = (ll) n / 2 * (1 + n) - ans; printf ("Case %d: %lld ", ++cas, ans); } return 0; }