• hdu5730 分治fft


    题意:(dp[n]=sum_{i=1}^ndp[i]*a[n-i]+a[n]),求dp[n],
    题解:分治fft裸题,就是用cdq分治加速fft,因为后面的需要用到前面的dp来算,不可能每次都fft过去,那样复杂度就(O(n^2logn))
    考虑当前枚举到[l,r]区间,左侧是[l,m]对于右侧每一个dp[x],左侧的贡献有(sum_{i=l}^m dp[i]*a[x-i]),那么我们需要快速算出左侧所有dp对右侧每个dp的所有贡献
    (x_0|x_1|x_2|...|x_{m-l})
    (dp_l|dp_{l+1}|dp_{l+2}|...|dp_{m})
    (y_0|y_1|y_2|...|y_{r-l})
    (a_1|a_2|a_3|...|a_{r-1})
    那么卷积之后就变成了系数就变成
    (m-l|m-l+1|...|r-l-1|)
    挨个加到对应的dp{m+1->r}里去即可
    需要注意的是cdq时每次一定是先把左侧算完,再算右边,(以前的cdq是先算底层,从叶到根,因为要做归并操作),这里是因为对于更新dp[x]的dp[i],dp[i]必须要更新完才能更新dp[x],

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 313
    #define ld long double
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    template<typename T>
    inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>
    inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=100000+10,maxn=400000+10,inf=0x3f3f3f3f;
    
    struct cd{
        db x,y;
        cd(db _x=0.0,db _y=0.0):x(_x),y(_y){}
        cd operator +(const cd &b)const{
            return cd(x+b.x,y+b.y);
        }
        cd operator -(const cd &b)const{
            return cd(x-b.x,y-b.y);
        }
        cd operator *(const cd &b)const{
            return cd(x*b.x - y*b.y,x*b.y + y*b.x);
        }
        cd operator /(const db &b)const{
            return cd(x/b,y/b);
        }
    }x[N<<3],y[N<<3];
    int rev[N<<3];
    void getrev(int bit)
    {
        for(int i=0;i<(1<<bit);i++)
            rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
    }
    void fft(cd *a,int n,int dft)
    {
        for(int i=0;i<n;i++)
            if(i<rev[i])
                swap(a[i],a[rev[i]]);
        for(int step=1;step<n;step<<=1)
        {
            cd wn(cos(dft*pi/step),sin(dft*pi/step));
            for(int j=0;j<n;j+=step<<1)
            {
                cd wnk(1,0);
                for(int k=j;k<j+step;k++)
                {
                    cd x=a[k];
                    cd y=wnk*a[k+step];
                    a[k]=x+y;a[k+step]=x-y;
                    wnk=wnk*wn;
                }
            }
        }
        if(dft==-1)for(int i=0;i<n;i++)a[i]=a[i]/n;
    }
    int dp[N],a[N];
    void cdq(int l,int r)
    {
        if(l==r)return ;
        int m=(l+r)>>1;
        cdq(l,m);
        int sz=0;
        while((1<<sz)<=(r-l+1))sz++;sz++;
        getrev(sz);int len=(1<<sz);
        for(int i=0;i<=len;i++)x[i]=y[i]=cd(0,0);
        for(int i=l;i<=m;i++)x[i-l]=cd(dp[i],0);
        for(int i=1;i<=r-l;i++)y[i-1]=cd(a[i],0);
        fft(x,len,1),fft(y,len,1);
        for(int i=0;i<=len;i++)x[i]=x[i]*y[i];
        fft(x,len,-1);
        for(int i=m+1;i<=r;i++)
        {
            dp[i]+=(x[i-l-1].x+0.5);
            dp[i]%=313;
        }
        cdq(m+1,r);
    }
    int main()
    {
        int n;
        while(~scanf("%d",&n)&&n)
        {
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
                a[i]%=313;dp[i]=a[i];
            }
            cdq(1,n);
            printf("%d
    ",dp[n]);
        }
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    java学习笔记 --- 网络编程(网络的基础知识)
    java学习笔记 --- 多线程(线程安全问题——同步代码块)
    java学习笔记 --- 多线程(多线程的控制)
    java学习笔记 --- 多线程(多线程的创建方式)
    java学习笔记 --- 多线程(1)
    java学习笔记 --- IO流小结
    java学习笔记 --- IO(3)
    java学习笔记 --- IO(2)
    java学习笔记 --- IO(1)
    把测试错误的图像重新挑选出来进行测试
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9475469.html
Copyright © 2020-2023  润新知