Description
多个询问l,r,求所有子区间异或和中最大是多少
强制在线
Solution
分块+可持久化trie
1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或和中最大为多少,(Theta(nsqrt n))
2.对于询问x,y:
①x,y属于同一块,O((sqrt n log n))直接扫
②x,y不属于同一块, 找到x右边第一块的左端点,用预处理求出左端点到y,剩下的直接扫,O((sqrt n log n))
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
using namespace std;
typedef long long LL;
const int M=12930;
const int B=30;
const int L=111;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-')f=0;
for(;isdigit(c);c=getchar())x=x*10+c-48;
return x;
}
int n,m,sn;
int a[M];
int s[L][M];
int tot;
int ch[M*32][2];
int sz[M*32];
int root[M];
int F(int x){//写法取决于存法
return x/sn;
}
int cpynode(int rt){
tot++;
ch[tot][0]=ch[rt][0];
ch[tot][1]=ch[rt][1];
sz[tot]=sz[rt]+1;
return tot;
}
int ins(int rt,int d){
int tmp,x,y,i,k;
tmp=x=cpynode(rt);
for(i=B;i>=0;i--){
k=(d>>i)&1;
y=cpynode(ch[x][k]);
ch[x][k]=y;
x=y;
}
return tmp;
}
int get(int lt,int rt,int d){
int i,k,res=0;
for(i=B;i>=0;i--){
k=((d>>i)&1)^1;
if(sz[ch[rt][k]]-sz[ch[lt][k]]>0)
lt=ch[lt][k],rt=ch[rt][k],res+=(1<<i);
else lt=ch[lt][k^1],rt=ch[rt][k^1];
}
return res;
}
int main(){
int i,j;
int x,y,z,st,ll,rr;
n=rd(),m=rd();
sn=(int)sqrt(n);
for(i=1;i<=n;i++) a[i]=a[i-1]^rd();
root[0]=ins(root[0],0);
for(i=1;i<=n;i++) root[i]=ins(root[i-1],a[i]);
for(i=0;i<=n;i++) if(i%sn==0){//
x=F(i);
s[x][i]=0;
for(j=i+1;j<=n;j++){
s[x][j]=max(s[x][j-1],get(root[(i-1)>=0?(i-1):(n+1)],root[j-1],a[j]));
}
}
int ans=0;
for(i=1;i<=m;i++){
ans%=n;
ll=rd()%n,rr=rd()%n;
x=min((ll+ans)%n+1,(rr+ans)%n+1);
y=max((ll+ans)%n+1,(rr+ans)%n+1);
x--;
ans=0;
if(F(x)==F(y)){
//ans=a[y];这样写是错的
for(j=x;j<y;j++) ans=max(ans,get(root[j],root[y],a[j]));
}
else{
if(x%sn==0) z=F(x);//
else z=F(x)+1;
st=z*sn;//取决于存法
ans=s[z][y];
for(j=x;j<st;j++) ans=max(ans,get(root[j],root[y],a[j]));
}
printf("%d
",ans);
}
return 0;
}