A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题目大意:给定一个棋盘,从左上走到右下,一步走一个格,只能往右或往下走,问有多少种不同的走法。
解题思路:简单的动规,递推公式F(i,j)=F(i-1,j)+F(i,j-1),初始值F(0,0)=1。
public class Solution { public int uniquePaths(int m, int n) { int[][] cnt = new int[m][n]; cnt[0][0]=1; for(int i=0;i<m;i++){ for(int j=0;j<n;j++){ if(i==0&&j==0) continue; if(i==0&&j!=0){ cnt[i][j]=cnt[i][j-1]; } else if(j==0&&i!=0){ cnt[i][j]=cnt[i-1][j]; } else { cnt[i][j]=cnt[i-1][j]+cnt[i][j-1]; } } } return cnt[m-1][n-1]; } }