• 【BZOJ 1177】【APIO 2009】Oil


    http://www.lydsy.com/JudgeOnline/problem.php?id=1177

    前缀和优化,时间复杂度$O(nm)$

    因为数据不全,快速读入会导致RE,切记!

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N = 1503;
    int in() {
    	int k = 0, fh = 1; char c = getchar();
    	for(; c < '0' || c > '9'; c = getchar())
    		if (c == '-') fh = -1;
    	for(; c >= '0' && c <= '9'; c = getchar())
    		k = (k << 3) + (k << 1) + c - '0';
    	return k * fh;
    }
    
    int a[N][N], a1[N][N], a2[N][N], a3[N][N], a4[N][N], s[N][N];
    int n, m, k, m1[N][N], m2[N][N], m3[N][N], m4[N][N], h[N], l[N];
    
    void init1() {
    	int S;
    	for(int i = k; i <= n; ++i)
    		for(int j = k; j <= m; ++j) {
    			S = s[i][j] - s[i - k][j] - s[i][j - k] + s[i - k][j - k];
    			a1[i - k + 1][j - k + 1] = S;
    			a2[i - k + 1][j] = S;
    			a3[i][j - k + 1] = S;
    			a4[i][j] = S;
    		}	
    }
    
    void init2() {
    	for(int i = n - k + 1; i >= 1; --i)
    		for(int j = m - k + 1; j >= 1; --j)
    			m1[i][j] = max(a1[i][j], max(m1[i + 1][j], m1[i][j + 1]));
    	for(int i = n - k + 1; i >= 1; --i)
    		for(int j = k; j <= m; ++j)
    			m2[i][j] = max(a2[i][j], max(m2[i + 1][j], m2[i][j - 1]));
    	for(int i = k; i <= n; ++i)
    		for(int j = m - k + 1; j >= 1; --j)
    			m3[i][j] = max(a3[i][j], max(m3[i - 1][j], m3[i][j + 1]));
    	for(int i = k; i <= n; ++i)
    		for(int j = k; j <= m; ++j)
    			m4[i][j] = max(a4[i][j], max(m4[i - 1][j], m4[i][j - 1]));
    }
    
    int main() {
    	scanf("%d%d%d", &n, &m, &k);
    	for(int i = 1; i <= n; ++i)
    		for(int j = 1; j <= m; ++j) {
    			scanf("%d", &a[i][j]);
    			s[i][j] = s[i - 1][j] + s[i][j - 1] + a[i][j] - s[i - 1][j - 1];
    		}
    	
    	init1();
    	
    	init2();
    	
    	int ans = 0, f1, f2, f3, f4;
    	for(int i = k; i <= n - k; ++i)
    		for(int j = k; j <= m - k; ++j) {
    			f1 = m4[i][j] + m3[i][j + 1] + m1[i + 1][1];
    			f2 = m3[i][j + 1] + m1[i + 1][j + 1] + m2[1][j];
    			f3 = m2[i + 1][j] + m1[i + 1][j + 1] + m3[i][1];
    			f4 = m4[i][j] + m2[i + 1][j] + m4[1][j + 1];
    			ans = max(ans, f1);
    			ans = max(ans, f2);
    			ans = max(ans, f3);
    			ans = max(ans, f4);
    		}
    	
    	for(int i = k + 1; i <= n - (k << 1) + 1; ++i)
    		for(int j = 1; j <= m - k + 1; ++j)
    			h[i] = max(h[i], a1[i][j]);
    	for(int i = k; i <= n - (k << 1); ++i)
    		ans = max(ans, m3[i][1] + m1[i + k + 1][1] + h[i + 1]);
    	for(int j = k + 1; j <= m - (k << 1) + 1; ++j)
    		for(int i = 1; i <= n - k + 1; ++i)
    			l[j] = max(l[j], a1[i][j]);
    	for(int j = k; j <= m - (k << 1); ++j)
    		ans = max(ans, m2[1][j] + m1[1][j + k + 1] + l[j + 1]);
    	
    	printf("%d
    ", ans);
    	return 0;
    }

    APIO的题目~

  • 相关阅读:
    socket http tcp udp ip 协议
    docker启动报错iptables failed: -重建docker0网络恢复
    python3处理json数据
    nginx添加认证
    安装nginx和nginx-gridfs和mongodb
    Centos7下CPU内存等资源监控
    linux 中 iptables关于ping的问题
    python3和pip3安装和问题解决
    Centos7下安装zabbix 3.0.19
    ansible学习网站
  • 原文地址:https://www.cnblogs.com/abclzr/p/5693503.html
Copyright © 2020-2023  润新知