训练使用的是天池的GPU,没有用到tensorBroadX,用的是静态的plt显示Loss。
我通过实验证明了同样的网络使用WGAN-GP的网络架构对比没有使用WGAN-GP的网络架构会有更加不容易模型崩溃(model collapse)。
下面是代码,使用的数据集CIFAR10。
utils.py文件在https://www.cnblogs.com/abc23/p/14390153.html中
from __future__ import absolute_import from __future__ import division from __future__ import print_function import PIL.Image as Image import torch from torch.autograd import Variable import torch.nn as nn import torchvision import torchvision.datasets as dsets import torchvision.transforms as transforms import utils from torch.autograd import grad from torch.autograd import Variable import functools import matplotlib.pyplot as plt import numpy as np import torchvision.utils as vutils %matplotlib inline # import torchlib
""" gpu """ gpu_id = [0] utils.cuda_devices(gpu_id) """ param """ epochs = 500 batch_size = 128 lr = 0.0002 n_critic = 5 z_dim = 100
# 决定我们在哪个设备上运行 device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
def gradient_penalty(x, y, f): # interpolation shape = [x.size(0)] + [1] * (x.dim() - 1) alpha = utils.cuda(torch.rand(shape)) z = x + alpha * (y - x) # gradient penalty z = utils.cuda(Variable(z, requires_grad=True)) o = f(z) g = grad(o, z, grad_outputs=utils.cuda(torch.ones(o.size())), create_graph=True)[0].view(z.size(0), -1) gp = ((g.norm(p=2, dim=1) - 1)**2).mean() return gp
""" data """ crop_size = 108 re_size = 64 offset_height = (218 - crop_size) // 2 offset_width = (178 - crop_size) // 2 crop = lambda x: x[:, offset_height:offset_height + crop_size, offset_offset_width + crop_size] transform = transforms.Compose([transforms.Resize(re_size), transforms.CenterCrop(re_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]) dataset = torchvision.datasets.CIFAR10(root='dataset/', train=True, transform=transform, download=True) # imagenet_data = dsets.ImageFolder('./data/img_align_celeba', transform=transform) data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 展示一些训练图片 real_batch = next(iter(data_loader)) plt.figure(figsize=(8,8)) plt.axis("off") plt.title("Training Images") plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=2, normalize=True).cpu(),(1,2,0)))
class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-5, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_()) self.beta = nn.Parameter(torch.zeros(num_features)) def forward(self, x): # This implementation is too slow!!! shape = [-1] + [1] * (x.dim() - 1) mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) y = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) y = self.gamma.view(*shape) * y + self.beta.view(*shape) return y
class Generator(nn.Module): def __init__(self, in_dim, dim=64): super(Generator, self).__init__() def dconv_bn_relu(in_dim, out_dim): return nn.Sequential( nn.ConvTranspose2d(in_dim, out_dim, 5, 2, padding=2, output_padding=1, bias=False), nn.BatchNorm2d(out_dim), nn.ReLU()) self.l1 = nn.Sequential( nn.Linear(in_dim, dim * 8 * 4 * 4, bias=False), nn.BatchNorm1d(dim * 8 * 4 * 4), nn.ReLU()) self.l2_5 = nn.Sequential( dconv_bn_relu(dim * 8, dim * 4), dconv_bn_relu(dim * 4, dim * 2), dconv_bn_relu(dim * 2, dim), nn.ConvTranspose2d(dim, 3, 5, 2, padding=2, output_padding=1), nn.Tanh()) def forward(self, x): y = self.l1(x) y = y.view(y.size(0), -1, 4, 4) y = self.l2_5(y) return y
class DiscriminatorWGANGP(nn.Module): def __init__(self, in_dim, dim=64): super(DiscriminatorWGANGP, self).__init__() def conv_ln_lrelu(in_dim, out_dim): return nn.Sequential( nn.Conv2d(in_dim, out_dim, 5, 2, 2), # Since there is no effective implementation of LayerNorm, # we use InstanceNorm2d instead of LayerNorm here. nn.InstanceNorm2d(out_dim, affine=True), nn.LeakyReLU(0.2)) self.ls = nn.Sequential( nn.Conv2d(in_dim, dim, 5, 2, 2), nn.LeakyReLU(0.2), conv_ln_lrelu(dim, dim * 2), conv_ln_lrelu(dim * 2, dim * 4), conv_ln_lrelu(dim * 4, dim * 8), nn.Conv2d(dim * 8, 1, 4)) def forward(self, x): y = self.ls(x) y = y.view(-1) return y
D = DiscriminatorWGANGP(3) G = Generator(z_dim) bce = nn.BCEWithLogitsLoss() utils.cuda([D, G, bce])
d_optimizer = torch.optim.Adam(D.parameters(), lr=lr, betas=(0.5, 0.999))
g_optimizer = torch.optim.Adam(G.parameters(), lr=lr, betas=(0.5, 0.999))
""" load checkpoint """ ckpt_dir = './checkpoints2/celeba_wgan_gp' utils.mkdir(ckpt_dir) try: ckpt = utils.load_checkpoint(ckpt_dir) start_epoch = ckpt['epoch'] D.load_state_dict(ckpt['D']) G.load_state_dict(ckpt['G']) d_optimizer.load_state_dict(ckpt['d_optimizer']) g_optimizer.load_state_dict(ckpt['g_optimizer']) except: print(' [*] No checkpoint!') start_epoch = 0
img_list = [] G_losses = [] D_losses = []
z_sample = Variable(torch.randn(100, z_dim)) z_sample = utils.cuda(z_sample) for epoch in range(start_epoch, epochs): for i, (imgs, _) in enumerate(data_loader): # step step = epoch * len(data_loader) + i + 1 # set train G.train() # leafs imgs = Variable(imgs) bs = imgs.size(0) z = Variable(torch.randn(bs, z_dim)) imgs, z = utils.cuda([imgs, z]) f_imgs = G(z) # train D r_logit = D(imgs) f_logit = D(f_imgs.detach()) wd = r_logit.mean() - f_logit.mean() # Wasserstein-1 Distance gp = gradient_penalty(imgs.data, f_imgs.data, D) d_loss = -wd + gp * 10.0 D.zero_grad() d_loss.backward() d_optimizer.step() if step % n_critic == 0: # train G z = utils.cuda(Variable(torch.randn(bs, z_dim))) f_imgs = G(z) f_logit = D(f_imgs) g_loss = -f_logit.mean() D.zero_grad() G.zero_grad() g_loss.backward() g_optimizer.step() # 为以后画损失图,保存损失 G_losses.append(g_loss.item()) D_losses.append(d_loss.item()) if (i + 1) % 150 == 0: print("Epoch: (%3d) (%5d/%5d)" % (epoch, i + 1, len(data_loader))) if (i + 1) % 150 == 0: G.eval() f_imgs_sample = (G(z_sample).data + 1) / 2.0 save_dir = './sample_images_while_training/celeba_wgan_gp' utils.mkdir(save_dir) torchvision.utils.save_image(f_imgs_sample, '%s/Epoch_(%d)_(%dof%d).jpg' % (save_dir, epoch, i + 1, len(data_loader)), nrow=10) if (i % 150 == 0): with torch.no_grad(): fake = G(z).detach().cpu() img_list.append(vutils.make_grid(fake, padding=2, normalize=True)) utils.save_checkpoint({'epoch': epoch + 1, 'D': D.state_dict(), 'G': G.state_dict(), 'd_optimizer': d_optimizer.state_dict(), 'g_optimizer': g_optimizer.state_dict()}, '%s/Epoch_(%d).ckpt' % (ckpt_dir, epoch + 1), max_keep=2)
plt.figure(figsize=(10,5)) plt.title("Generator and Discriminator Loss During Training") plt.plot(G_losses,label="G") plt.plot(D_losses,label="D") plt.xlabel("iterations") plt.ylabel("Loss") plt.legend() plt.show()
# 从数据加载器中获取一批真实图像 real_batch = next(iter(data_loader)) # 画出真实图像 plt.figure(figsize=(15,15)) plt.subplot(1,2,1) plt.axis("off") plt.title("Real Images") plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0))) # 画出来自最后一次训练的假图像 plt.subplot(1,2,2) plt.axis("off") plt.title("Fake Images") plt.imshow(np.transpose(img_list[-1],(1,2,0))) plt.show()