• Pytorch两种构建网络的方法


    版本:Pytorch 1.0  代码是在jupter中执行的。

    导包:

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms

    设置超参:

    BATCH_SIZE = 512 # 大概需要2G的显存
    EPOCHS = 20 # 总共训练批次
    DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    加载数据:

    # 下载训练集
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train = True, download = True,
                  transform = transforms.Compose([
                      transforms.ToTensor(),
                      transforms.Normalize((0.1037,), (0.3081,))
                  ])),
    batch_size = BATCH_SIZE, shuffle = True)
    
    # 测试集
    test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train = False, transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1037,), (0.3081,))
    ])),
    batch_size = BATCH_SIZE, shuffle = True)

    构建网络:方式一

    # 定义模型
    class ConvNet(nn.Module):
        def __init__(self):
            super().__init__()
            #1*1*28*28
            self.conv1 = nn.Conv2d(1, 10, 5) 
            self.conv2 = nn.Conv2d(10, 20, 3) 
            self.fc1 = nn.Linear(20 * 10 * 10, 500)
            self.fc2 = nn.Linear(500, 10)
            
        def forward(self, x):
            in_size = x.size(0)
            out= self.conv1(x) # 1* 10 * 24 *24
            out = F.relu(out)
            out = F.max_pool2d(out, 2, 2) # 1* 10 * 12 * 12
            out = self.conv2(out) # 1* 20 * 10 * 10
            out = F.relu(out)
            out = out.view(in_size, -1) # 1 * 2000
            out = self.fc1(out) # 1 * 500
            out = F.relu(out)
            out = self.fc2(out) # 1 * 10
            out = F.log_softmax(out, dim = 1)
            return out

    构建网络:方式二——把更多的内容放在了Sequential里面,觉得网络会显得清楚一些

    class MyNet(torch.nn.Module):
        def __init__(self):  
            super(MyNet, self).__init__()  
            self.conv1 = nn.Sequential( # (1,28,28)  
                         nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5,  
                                   stride=1, padding=2), # (16,28,28)  
            # 想要con2d卷积出来的图片尺寸没有变化, padding=(kernel_size-1)/2  
                         nn.ReLU(),  
                         nn.MaxPool2d(kernel_size=2) # (16,14,14)  
                         )  
            self.conv2 = nn.Sequential( # (16,14,14)  
                         nn.Conv2d(16, 32, 5, 1, 2), # (32,14,14)  
                         nn.ReLU(),  
                         nn.MaxPool2d(2) # (32,7,7)  
                         )  
            self.out = nn.Linear(32*7*7, 10)  
      
        def forward(self, x):  
            x = self.conv1(x)  
            x = self.conv2(x)  
            x = x.view(x.size(0), -1) # 将(batch,32,7,7)展平为(batch,32*7*7)  
            output = self.out(x)  
            return output 

    定义优化器:

    #生成模型和优化器
    model = MyNet().to(DEVICE)  # MyNet可以改为ConvNet 调用不同模型
    optimizer = optim.Adam(model.parameters())

    定义训练和测试函数:

    # 定义训练函数
    def train(model, device, train_loader, optimizer, epoch):
        model.train()  # 设置为trainning模式
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()  # 优化器梯度初始化为零
            output = model(data)  # 把数据输入网络并得到输出,即进行前向传播
            loss = F.cross_entropy(output, target)   # 定义损失函数
            loss.backward()  # 反向传播梯度
            optimizer.step()  # 结束一次前传+反传之后,更新参数
            if (batch_idx + 1) % 30 == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))
    # 定义测试函数
    def test(model, device, test_loader):
        model.eval()  # 设置为test模式
        test_loss =0  # 初始化测试损失值为0
        correct = 0  # 初始化预测正确的数据个数为0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)  #计算前要把变量变成Variable形式,因为这样子才有梯度
                output = model(data)
                test_loss += F.nll_loss(output, target, reduction = 'sum') # 将一批的损失相加
                pred = output.max(1, keepdim = True)[1] # 找到概率最大的下标
                correct += pred.eq(target.view_as(pred)).sum().item()  # 对预测正确的数据个数进行累加
        
        test_loss /= len(test_loader.dataset)
        print("
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%) 
    ".format(
            test_loss, correct, len(test_loader.dataset),
            100.* correct / len(test_loader.dataset)
                ))

    main函数

    # 最后开始训练和测试
    for epoch in range(1, EPOCHS + 1):
        train(model,  DEVICE, train_loader, optimizer, epoch)
        test(model, DEVICE, test_loader)
  • 相关阅读:
    【转】myeclipse设置优化+快捷命令大全
    记昨日参加南天竺饶老师回访的一些感触点
    [zz]程序猿,你今天装B了没?
    什么是CGI
    Agile Tour——敏捷,在厦门落地 笔记小结
    用按键精灵来自动投票
    win7下安装matlab,启动后提示VC++Runtime Library错误 runtime error!
    单次扫描完成二值图连通区域标记
    6.3.2 最小支撑树树Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind
    用Java HashMap做对象Cache时要注意一点
  • 原文地址:https://www.cnblogs.com/abc23/p/12597196.html
Copyright © 2020-2023  润新知