A Simple Math Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2598 Accepted Submission(s): 807
Problem Description
Given two positive integers a and b,find suitable X and Y to meet the conditions:
X+Y=a
Least Common Multiple (X, Y) =b
Input
Input includes multiple sets of test data.Each test data occupies one line,including two positive integers a(1≤a≤2*10^4),b(1≤b≤10^9),and their meanings are shown in the description.Contains most of the 12W test cases.
Output
For each set of input data,output a line of two integers,representing X, Y.If you cannot find such X and Y,output one line of "No Solution"(without quotation).
Sample Input
6 8 798 10780
Sample Output
No Solution 308 490
Source
Recommend
wange2014
题意为 找出满足x+y=a且x,y的最小公倍数等于b的 x y
分析:该题的数据范围很大,测试组数很多,需要算法有较小的复杂度或者预处理
最小公倍数与gcd是紧密相连的,从题目中可以发现 gcd(a,b)=gcd(x,y);
那么另令k=gcd(a,b) b=(x*y)/k b/k=(x/k)*(y/k)
a1=a/k,b1=b/k; x=l*k,y=(a1-l)*k;
然后通过二分找到对应的l值即可
代码如下:
#include <cstdio> #include <iostream> #include <cstring> #include <algorithm> using namespace std; int main() { int a,b,k,a1,b1,l,r,mid; while(scanf("%d%d",&a,&b)!=EOF) { k=__gcd(a,b); a1=a/k;b1=b/k; l=0; r=a1/2+1; while(l+1<r) { mid=(l+r)>>1; if(mid*(a1-mid)<=b1) l=mid; else r=mid; } if(l*(a1-l)!=b1)puts("No Solution"); else printf("%d %d ",l*k,(a1-l)*k); } return 0; }