• pandas.DataFrame.to_sql


     
     

    DataFrame.to_sqlselfname  strconschema Noneif_exists  str 'fail'index  bool Trueindex_label Nonechunksize Nonedtype Nonemethod None → [资源]

    将存储在DataFrame中的记录写入SQL数据库。

    支持SQLAlchemy [1]支持的数据库。可以新建,追加或覆盖表。

    参量
    名称str

    SQL表的名称。

    con sqlalchemy.engine.Engine或sqlite3.Connection

    使用SQLAlchemy可以使用该库支持的任何数据库。为sqlite3.Connection对象提供了旧版支持。用户负责处理和处置SQLAlchemy connectable的连接,请参见此处

    模式str,可选

    指定模式(如果数据库支持)。如果为None,请使用默认架构。

    if_exists {'fail','replace','append'},默认为'fail'

    如果表已经存在,该如何表现。

    • 失败:引发ValueError。

    • replace:在插入新值之前删除表。

    • append:将新值插入现有表。

    索引布尔值,默认为True

    将DataFrame索引写为列。使用index_label作为表中的列名。

    index_label str或序列,默认为无

    索引列的列标签。如果给出None(默认)并且 index为True,则使用索引名。如果DataFrame使用MultiIndex,则应给出一个序列。

    chunksize int,可选

    指定一次要写入的每个批次中的行数。默认情况下,所有行将一次写入。

    dtype dict或标量,可选

    指定列的数据类型。如果使用字典,则键应为列名,值应为SQLAlchemy类型或sqlite3传统模式的字符串。如果提供了标量,它将应用于所有列。

    方法{None,'multi',callable},可选

    控制使用的SQL插入子句:

    • 无:使用标准SQL INSERT子句(每行一个)。

    • 'multi':在单个INSERT子句中传递多个值

    • 可签名的(pd_table, conn, keys, data_iter)

    详细信息和示例可调用实现可以在部分insert方法中找到

    0.24.0版中的新功能。

    加薪
    ValueError

    当表已经存在并且if_exists为'fail'时(默认)。

    也可以看看

    read_sql

    从表中读取一个DataFrame。

    笔记

    如果数据库支持,则时区感知日期时间列将与SQLAlchemy 一起写为 类型。否则,日期时间将被存储为时区,而不知道原始时区的本地时间戳。Timestamp with timezone

    0.24.0版中的新功能。

    参考资料

    1个

    http://docs.sqlalchemy.org

    2

    https://www.python.org/dev/peps/pep-0249/

    例子

    创建一个内存中的SQLite数据库。

    from sqlalchemy import create_engine
    engine = create_engine('sqlite://', echo=False)

    从头开始创建带有3行的表。

    df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']})
    print(df)
         name
    0  User 1
    1  User 2
    2  User 3
    df.to_sql('users', con=engine)
    engine.execute("SELECT * FROM users").fetchall()
    [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]
    df1 = pd.DataFrame({'name' : ['User 4', 'User 5']})
    df1.to_sql('users', con=engine, if_exists='append')
    engine.execute("SELECT * FROM users").fetchall()
    [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'),
     (0, 'User 4'), (1, 'User 5')]

    用Just覆盖表df1

    df1.to_sql('users', con=engine, if_exists='replace',
               index_label='id')
    engine.execute("SELECT * FROM users").fetchall()
    [(0, 'User 4'), (1, 'User 5')]

    指定dtype(特别适用于缺少值的整数)。请注意,虽然熊猫被迫将数据存储为浮点数,但数据库支持可为空的整数。使用Python提取数据时,我们会返回整数标量。

    df = pd.DataFrame({"A": [1, None, 2]})
    df
         A
    0  1.0
    1  NaN
    2  2.0
    from sqlalchemy.types import Integer
    df.to_sql('integers', con=engine, index=False,
              dtype={"A": Integer()})
    engine.execute("SELECT * FROM integers").fetchall()
    [(1,), (None,), (2,)]
    engine = create_engine('mysql+pymysql://admin:111111@172.16.13.119:3306/jt')
                engine.execute('DROP TABLE if exists jira_report_01')
                engine.execute('CREATE TABLE jira_report_01 LIKE jira_report;')
                df_r_t_data.to_sql('jira_report_01', con=engine, if_exists='append', index=True, index_label='CycleName')
    
                engine = create_engine('mysql+pymysql://admin:111111@172.16.13.119:3306/jt')
                dfReport = pd.read_sql_table(table_name='jira_report_01', con=engine, columns=['CycleName','通过', '失败', '未执行', '阻止', '不适用'])
                DataHtml = pd.DataFrame.to_html(dfReport)
    
                encoding_type = self.get_encoding_type('/Users/cloud/7_3/JIRA_REST_API/jira_data/email_template.html')
                tags_stats = {"project_name": self.project_name,
                              "project_version": self.project_version,
                              "test_date": datetime.date.today(),
                              "result_body": DataHtml,
                              "new_defects_added_today": self.new_defects_added_today,
                              "current_version_reference_defect": self.current_version_reference_defect
                              }
    
                template_dic = {"test_stat": tags_stats}
                templates_path = os.path.abspath('..') + os.sep + 'templates/'
    
                env = jinja2.Environment(
                    loader=jinja2.FileSystemLoader(templates_path,encoding=encoding_type)
                )
                template = env.get_template('email_template.html')
                send_mail_template = template.render(template_dic)
                email_canvas = send_mail_template
                self.email_status = self.email_static_execution_distribution('2285989001@qq.com', '【{}】【{}】【{}】自动化测试情况'.format(self.project_name, self.project_version, datetime.date.today()), email_canvas)
                return self.email_status

    JIRA 循环获取接口参数

    log_prefix = "{}   executions_status_count_for_cycle_by_projectId_and_version:".format(self.tag)
                print(log_prefix)
                self.project_name = project_name
                self.project_version = project_version
                self.tester_email = tester_email
                jira = JIRA(server=self.base_url, basic_auth=(self.jira_user, self.jira_password))
                projects = jira.projects()
                if isinstance(self.project_name, str) and isinstance(self.project_version,str):
                    for i in range(len(projects)):
                        if str(projects).__contains__(self.project_name) and projects[i].key == self.project_name:
                            project_id = projects[i].id
                            print('HARI3.0 Platform 项目ID是 : ', project_id)
                            print('version 
    ', jira.project(project_id).versions)
                            print(len(jira.project(project_id).versions))
                            for j in range(len(jira.project(project_id).versions)):
                                if str(jira.project(project_id).versions).__contains__(self.project_version) and jira.project(project_id).versions[j].name == self.project_version:
                                    version_id = jira.project(project_id).versions[j].id
                                    print('项目version编号ID是 
    ', version_id)
                                    url = '/rest/zephyr/latest/execution/executionsStatusCountForCycleByProjectIdAndVersion?projectId={}&versionId={}&components=&_={}'.format(
                                        project_id, version_id, int(round(time.time() * 1000)))
                                    r = self.session.get(self.base_url + url, headers=self.jira_headers, verify=False)
                                    print('
    jira返回值
    ', r.text)
                                    if r.status_code == 200:
                                        print("
    获取JIRA列表成功: {} ".format(r.text))
                                        result_json = r.json()
                                        new_dict = {k.split(':')[0]: v for k, v in result_json.items()}
                                        print(new_dict)
                                        self.email_status =self.export_excel(new_dict)
                                        return self.email_status
    
                            else:
                                self.email_status = ['FAIL','邮件发送失败,回调信息 project_version 错误或者不存在!
    当前的版本是{}'.format(jira.project(project_id).versions)]
                                return self.email_status
                    else:
                        self.email_status = ['FAIL','邮件发送失败,回调信息 JIRA 项目名称 project_name 错误!
    {}'.format(str(projects))]
                        return self.email_status

     

        def sql_issue_excel(self, table_name, jql):
            print('PASS')
            self.write_to_excel('Sprints', jql)
            search_list = self.search_list_sprints[0]
            print(search_list)
            print(type(search_list))
            search_data = pd.DataFrame(search_list)
            search_data_dict = search_data.to_dict()
            print('current search_data 
    ', search_data)
            print(type(search_data_dict))
            print(len(search_data_dict))
            if isinstance(search_data_dict, dict):
                search_data_dict["Issue"] = search_data_dict.pop(0)
                search_data_dict["Created"] = search_data_dict.pop(1)
                search_data_dict["Issue Type"] = search_data_dict.pop(2)
                search_data_dict["Summary"] = search_data_dict.pop(3)
                search_data_dict["Status"] = search_data_dict.pop(4)
                search_data_dict["Severity"] = search_data_dict.pop(5)
                search_data_dict["Priority"] = search_data_dict.pop(6)
                search_data_dict["Reporter"] = search_data_dict.pop(7)
                search_data_dict["Assignee"] = search_data_dict.pop(8)
                search_data_dict["URL"] = search_data_dict.pop(9)
                print(len(search_data_dict))
                print(search_data_dict)
                search_data = search_data_dict
            search_data_pd = pd.DataFrame(search_data)
            print('current 
    ', search_data_pd)
    
            dtypedict = {
                'Issue': NVARCHAR(length=255),
                'Created': DATE,
                'Issue Type': NVARCHAR(length=255),
                'Summary': NVARCHAR(length=255),
                'Status': NVARCHAR(length=255),
                'Severity': NVARCHAR(length=255),
                'Priority': NVARCHAR(length=255),
                'Reporter': NVARCHAR(length=255),
                'Assignee': NVARCHAR(length=255),
                'URL': NVARCHAR(length=255)
            }
            engine = create_engine('mysql+pymysql://admin:111111@172.16.13.119:3306/jt')
            engine.execute('DROP TABLE if exists {}'.format(table_name))
            # engine.execute('CREATE TABLE search_issues LIKE search_issues_template;')
            search_data_pd.to_sql(table_name, con=engine, if_exists='append', index=False, dtype=dtypedict)
            df_search_issues = pd.read_sql_table(table_name=table_name, con=engine, columns=['Issue', 'Created', 'Issue Type', 'Summary', 'Status', 'Severity', 'Priority', 'Reporter', 'Assignee', 'URL'])
            return pd.DataFrame.to_html(df_search_issues)
    
        def export_excel(self, export):
            try:
                jql_new_defects_added_today = ['''project = RDK AND issuetype = 缺陷 AND status in (Resolved, Investigating, Rejected, Duplicated, Monitor, New, Reopen, Analysing, integrated) AND affectedVersion = V0.6 AND created >= -1d AND created <= 1d ORDER BY created DESC, status DESC, summary ASC, key ASC, priority DESC, updated DESC''']
    
                jql_current_version_reference_defect = ['''project = RDK AND issuetype = 缺陷 AND status in (Resolved, Investigating, Rejected, Duplicated, Monitor, New, Reopen, Analysing, integrated) AND affectedVersion = V0.6 AND created >= -7d AND created <= 7d ORDER BY created DESC, status DESC, summary ASC, key ASC, priority DESC, updated DESC''']
                self.sql_issue_excel('new_defects_added_today',jql_new_defects_added_today)
                self.current_version_reference_defect = self.sql_issue_excel('current_version_reference_defect', jql_current_version_reference_defect)
                df_r_t_data = pd.DataFrame(export)
                df_r_t_data = df_r_t_data.T
                engine = create_engine('mysql+pymysql://admin:111111@172.16.13.119:3306/jt')
                engine.execute('DROP TABLE if exists jira_report_01')
                engine.execute('CREATE TABLE jira_report_01 LIKE jira_report;')
                df_r_t_data.to_sql('jira_report_01', con=engine, if_exists='append', index=True, index_label='CycleName')
    
                engine = create_engine('mysql+pymysql://admin:111111@172.16.13.119:3306/jt')
                dfReport = pd.read_sql_table(table_name='jira_report_01', con=engine, columns=['CycleName','通过', '失败', '未执行', '阻止', '不适用'])
                DataHtml = pd.DataFrame.to_html(dfReport)
    
                encoding_type = self.get_encoding_type('/Users/cloud/7_3/JIRA_REST_API/jira_data/email_template.html')
                tags_stats = {"project_name": self.project_name,
                              "project_version": self.project_version,
                              "test_date": datetime.date.today(),
                              "result_body": DataHtml,
                              "new_defects_added_today": self.new_defects_added_today,
                              "current_version_reference_defect": self.current_version_reference_defect
                              }
    
                template_dic = {"test_stat": tags_stats}
                templates_path = os.path.abspath('..') + os.sep + 'templates/'
    
                env = jinja2.Environment(
                    loader=jinja2.FileSystemLoader(templates_path,encoding=encoding_type)
                )
                template = env.get_template('email_template.html')
                send_mail_template = template.render(template_dic)
                email_canvas = send_mail_template
                self.email_status = self.email_static_execution_distribution('2285989001@qq.com', '【{}】【{}】【{}】SIT测试情况'.format(self.project_name, self.project_version, datetime.date.today()), email_canvas)
                return self.email_status
            except Exception as e:
                self.email_status = ['FAIL','邮件发送失败,回调信息{}'.format(e)]
                return self.email_status

     

                workbook = xlsxwriter.Workbook(jira_current_issue_list_file)
                bold = workbook.add_format({'bold': True})
                row = 0
                col = 0
                value = 0
                print("Attempting to create data tables for: {}".format(modules))
                modules = modules.split()
                # 为不同类型的数据创建单独的工作表
                for x in modules:
                    print("
    Searching: {}".format(x.upper()))
                    # 为之前创建的2个模块中的每个模块创建特定格式
                    if x.lower() == 'sprints':
                        search_list = self.jira_search(jql)
                        value = 0
                        row = 0
                        col = 0
                        worksheet = workbook.add_worksheet('Sprints')
                        self.search_list_sprints = self.search_for_search_list(jql)
                        for x in range(len(self.search_list_sprints)):
                            search_amount_sprints = len(self.search_list_sprints[value]) + 2
                            worksheet.write(row, 0, search_list[x], bold)
                            worksheet.add_table(row + 1, 0, row + search_amount_sprints, 11, {'data': self.search_list_sprints[value],
                                                                                              'style': 'Table Style Medium 2',
                                                                                              'columns': [{'header': 'Issue'},
                                                                                                          {'header': 'Created'},
                                                                                                          {'header': 'Issue Type'},
                                                                                                          {'header': 'Summary'},
                                                                                                          {'header': 'Status'},
                                                                                                          {'header': 'Severity'},
                                                                                                          {'header': 'Priority'},
                                                                                                          {'header': 'Reporter'},
                                                                                                          {'header': 'Assignee'},
                                                                                                          {'header': 'URL'}]})
                            format2 = workbook.add_format({'num_format': 'mm/dd/yy'})
                            # Little column formatting
                            worksheet.set_column('A:A', 15)
                            worksheet.set_column('B:B', 10, format2)
                            worksheet.set_column('C:C', 5)
                            worksheet.set_column('D:D', 5)
                            worksheet.set_column('E:E', 12)
                            worksheet.set_column('F:F', 20)
                            row += search_amount_sprints + 1
                            value += 1
                else:
                    print('There are no more values to add')
                workbook.close()
            except Exception as e:
                print(e)
                return e

        def sql_issue_excel(self, table_name, jql):
            print('PASS')
            if not self.new_defects_added_today and isinstance(jql, list) and not self.current_version_reference_defect:
                print('当前执行的是【今天新增缺陷】{} new_defects_added_today'.format(jql))
                self.write_to_excel('Sprints', jql)
            if not self.current_version_reference_defect and isinstance(jql, list) and self.new_defects_added_today:
                print('当前执行的是【当前版本引用缺陷】{} current_version_reference_defect'.format(jql))
                self.write_to_excel('Sprints', jql)
            search_list = self.search_list_sprints[0]
            print(search_list)
            print(type(search_list))
            search_data = pd.DataFrame(search_list)
            search_data_dict = search_data.to_dict()
            print('current search_data 
    ', search_data)
            print(type(search_data_dict))
            print(len(search_data_dict))
            if isinstance(search_data_dict, dict) and len((search_data_dict)) != 0:
                search_data_dict["Issue"] = search_data_dict.pop(0)
                search_data_dict["Created"] = search_data_dict.pop(1)
                search_data_dict["Issue Type"] = search_data_dict.pop(2)
                search_data_dict["Summary"] = search_data_dict.pop(3)
                search_data_dict["Status"] = search_data_dict.pop(4)
                search_data_dict["Severity"] = search_data_dict.pop(5)
                search_data_dict["Priority"] = search_data_dict.pop(6)
                search_data_dict["Reporter"] = search_data_dict.pop(7)
                search_data_dict["Assignee"] = search_data_dict.pop(8)
                search_data_dict["URL"] = search_data_dict.pop(9)
                print(len(search_data_dict))
                print(search_data_dict)
                search_data = search_data_dict
    
                search_data_pd = pd.DataFrame(search_data)
                print('current 
    ', search_data_pd)
                dtypedict = {
                    'Issue': NVARCHAR(length=255),
                    'Created': DATE,
                    'Issue Type': NVARCHAR(length=255),
                    'Summary': NVARCHAR(length=255),
                    'Status': NVARCHAR(length=255),
                    'Severity': NVARCHAR(length=255),
                    'Priority': NVARCHAR(length=255),
                    'Reporter': NVARCHAR(length=255),
                    'Assignee': NVARCHAR(length=255),
                    'URL': NVARCHAR(length=255)
                }
                engine = create_engine('mysql+pymysql://admin:111111@172.16.13.119:3306/jt')
                engine.execute('DROP TABLE if exists {}'.format(table_name))
                # engine.execute('CREATE TABLE search_issues LIKE search_issues_template;')
                search_data_pd.to_sql(table_name, con=engine, if_exists='append', index=False, dtype=dtypedict)
                df_search_issues = pd.read_sql_table(table_name=table_name, con=engine,columns=['Issue', 'Created', 'Issue Type', 'Summary', 'Status', 'Severity', 'Priority', 'Reporter', 'Assignee', 'URL'])
                return pd.DataFrame.to_html(df_search_issues)
            elif len((search_data_dict)) == 0:
                return print('当前查询数据返回空值')
     
  • 相关阅读:
    转:基于科大讯飞语音API语音识别开发详解
    转:Netty系列之Netty高性能之道
    转:hadoop知识整理
    转:nginx防DDOS攻击的简单配置
    转:Google论文之一----Bigtable学习翻译
    POJ 2112 Optimal Milking(最大流+二分)
    HDU 4647 Another Graph Game(贪心)
    HDU 4671 Partition(定理题)
    HDU 4648 Magic Pen 6
    HDU 4649 Professor Tian(DP)
  • 原文地址:https://www.cnblogs.com/a00ium/p/13246452.html
Copyright © 2020-2023  润新知