• NOI模拟题4 Problem A: 生成树(mst)


    Solution

    我们考虑答案的表达式:

    [ans = sqrt{frac{sum_{i = 1}^{n - 1} (w_i - overline{w})^2}{n - 1}} ]

    其中(w[i])表示选择的每一条边的权值.

    考虑一种朴素的做法:

    我们枚举每一个(overline{w}), 把所有边按照其对答案的贡献((w_i - overline{w})^2)排序, 然后用普通的kruskal解决即可.

    这种做法的本质在于枚举每一个可能的((w_i - overline{w}))序列. 我们注意到, ((w_i - overline w))是一个二次函数, 因此我们当(overline w)上升时, 该值先下降再上升.

    考虑什么时候两条边对应的贡献在排好序的序列中会交换位置: ((w_i - overline w)^2 = (w_j - overline w)^2), 即(overline w = frac {w_i + w_j} 2)

    两条边的贡献在序列中最多只会交换一次位置, 因此我们只需要枚举每个临界值, 就相当于枚举所有合法的序列. 跑kruskal即可.

    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    #include <vector>
    
    using namespace std;
    const double INF = 1e50, EPS = 1e-9;
    const int N = 20;
    int n;
    int x[N], y[N];
    double w[N * N], dis[N][N];
    struct edge
    {
        int u, v;
        double w;
        inline edge() {}
        inline edge(int _u, int _v, double _w) { u = _u; v = _v; w = _w; }
        inline int operator <(const edge &a) const { return w < a.w; }
    }edg[N * N];
    inline double sqr(double a) { return a * a; }
    inline double getDistance(int u, int v) { return sqrt(sqr(x[u] - x[v]) + sqr(y[u] - y[v])); }
    struct disjointSet
    {
        int pre[N];
        inline void clear() { for (int i = 0; i < n; ++ i) pre[i] = i; }
        inline int access(int u)
        {
            if (pre[u] == u) return u;
            return pre[u] = access(pre[u]);
        }
    }st;
    inline double work(double avr)
    {
        int tot = 0;
        for (int i = 0; i < n; ++ i) for (int j = i + 1; j < n; ++ j) edg[tot ++] = edge(i, j, sqr(dis[i][j] - avr));
        sort(edg, edg + tot);
        st.clear();
        vector<int> bck; bck.clear(); int cnt = 0;
        for (int i = 0; cnt < n - 1; ++ i)
        {
            int u = edg[i].u, v = edg[i].v, rootOfU = st.access(u), rootOfV = st.access(v);
            if (rootOfU == rootOfV) continue;
            ++ cnt;
            st.pre[rootOfU] = rootOfV; bck.push_back(i);
        }
        double sum = 0, res = 0;
        for (int i = 0; i < n - 1; ++ i) sum += dis[edg[bck[i]].u][edg[bck[i]].v];
        for (int i = 0; i < n - 1; ++ i) res += sqr(dis[edg[bck[i]].u][edg[bck[i]].v] - sum / (n - 1));
        return sqrt(res / (n - 1));
    }
    int main()
    {
    
    #ifndef ONLINE_JUDGE
    
        freopen("mst.in", "r", stdin);
        freopen("mst.out", "w", stdout);
    
    #endif
    
        int T; scanf("%d", &T);
        for (int cs = 0; cs < T; ++ cs)
        {
            scanf("%d", &n);
            for (int i = 0; i < n; ++ i) scanf("%d", x + i);
            for (int i = 0; i < n; ++ i) scanf("%d", y + i);
            int tot = 0;
            for (int i = 0; i < n; ++ i) for (int j = i + 1; j < n; ++ j) dis[i][j] = w[tot ++] = getDistance(i, j);
            sort(w, w + tot);
            double ans = INF;
            for (int i = 0; i < tot; ++ i) for(int j = i + 1; j < tot; ++ j)
                ans = min(ans, work((w[i] + w[j]) / 2 + EPS)), ans = min(ans, work((w[i] + w[j]) / 2 - EPS));
            printf("%.3lf
    ", ans);
        }
    }
    
    
  • 相关阅读:
    怎么删除json 键值对
    解决html 图片缓存问题
    美工常用的网站分享
    小程序授权页面
    BitMap原理
    css页面加载动画
    可能这些是你想要的H5软键盘兼容方案
    关于范式 :1NF 2NF 3NF等
    Python3学习DAY4
    DTD相关
  • 原文地址:https://www.cnblogs.com/ZeonfaiHo/p/7581579.html
Copyright © 2020-2023  润新知