• POJ1430 Binary Stirling Numbers


    @(POJ)[Stirling數, 排列組合, 數形結合]

    Description

    The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts:
    {1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}
    {1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.
    There is a recurrence which allows to compute S(n, m) for all m and n.
    S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;
    S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.
    Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2.
    Example:
    S(4, 2) mod 2 = 1.
    Task
    Write a program which for each data set:
    reads two positive integers n and m,
    computes S(n, m) mod 2,
    writes the result.

    Input

    The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 200. The data sets follow.
    Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9.

    Output

    The output should consist of exactly d lines, one line for each data set. Line i, 1 <= i <= d, should contain 0 or 1, the value of S(ni, mi) mod 2.

    Sample Input

    1
    4 2
    

    Sample Output

    1
    

    Solution

    題意:
    求斯特林數$$ left{ egin{array}{} n k end{array}{} ight} % 2$$$$n, m in [1, 10^9]$$
    這題直接求解肯定是會T的, 因此考慮優化.

    轉載自sdchr博客
    侵刪



    代碼附上:

    #include<cstdio>
    #include<cctype>
    using namespace std;
    
    inline int read()
    {
    	int x = 0, flag = 1;
    	char c;
    	while(! isdigit(c = getchar()))
    		if(c == '-')
    			flag *= - 1;
    	while(isdigit(c))
    		x = x * 10 + c - '0', c = getchar();
    	return x * flag;
    }
    
    void println(int x)
    {
    	if(x < 0)
    		putchar('-'), x *= - 1;
    	if(x == 0)
    		putchar('0');
    	int ans[1 << 5], top = 0;
    	while(x)
    		ans[top ++] = x % 10, x /= 10;
    	for(; top; top --)
    		putchar(ans[top - 1] + '0');
    	putchar('
    ');
    }
    
    long long getQuantity(int x)
    {
    	long long ret = 0;
    	
    	for(int i = 2; i <= x; i <<= 1)
    		ret += x / i;
    		
    	return ret;
    }
    
    int calculate(int x, int y)
    {
    	return getQuantity(x) - getQuantity(y) - getQuantity(x - y) == 0;
    }
    
    int main()
    {
    	int T = read();
    	
    	while(T --)
    	{
    		int n = read(), m = read();
    		int d = n - m, oddQua = (m + 1) / 2;
    		println(calculate(d + oddQua - 1, oddQua - 1));
    	}
    }
    
  • 相关阅读:
    阿里早期Android加固代码的实现分析
    如何利用C++的time头文件获取系统时间
    Python编写基于socket的非阻塞多人聊天室程序(单线程&多线程)
    Dalvik模式下在Android so库文件.init段、.init_array段构造函数上下断点
    手动绕过百度加固Debug.isDebuggerConnected反调试的方法
    request使用代理
    requests爬取豆瓣热门电视剧
    scrapy-继承默认的user-agent 中间件
    scrapy-下载器中间件 随机切换user_agent
    scrapy 直接在编辑器运行
  • 原文地址:https://www.cnblogs.com/ZeonfaiHo/p/6444001.html
Copyright © 2020-2023  润新知