树状数组维护DP + 高精度
Description
These days, Sempr is crazed on one problem named Crazy Thair. Given N (1 ≤ N ≤ 50000) numbers, which are no more than 109, Crazy Thair is a group of 5 numbers {i, j, k, l, m} satisfying:
- 1 ≤ i < j < k < l < m ≤ N
- Ai < Aj < Ak < Al < Am
For example, in the sequence {2, 1, 3, 4, 5, 7, 6},there are four Crazy Thair groups: {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 3, 4, 5, 7} and {2, 3, 4, 5, 7}.
Could you help Sempr to count how many Crazy Thairs in the sequence?
Input
Input contains several test cases. Each test case begins with a line containing a number N, followed by a line containing N numbers.
Output
Output the amount of Crazy Thairs in each sequence.
Sample Input
5
1 2 3 4 5
7
2 1 3 4 5 7 6
7
1 2 3 4 5 6 7
Sample Output
1
4
21
题目大意
给你一个长度为 n 的序列,输出长度为5
的上升子序列的个数。
题解
拿到这道题,可以很快的想出dp定义,
dp[i][j] 表示以 j 这个数结尾能组成长度为 i 的上升子序列的个数。可以推出转移方程为
(dp[i][j] = sum_{k=1}^{j-1}dp[i-1][k])
i 最大为5 ,j可以达到(10^9),但个数只有(10^5),所以我们可以考虑将 j 离散化,开 5 个树状数组来维护。
最后,这道题最坑的是,答案可能非常大,需要高精度。。。
代码
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
#define lowbit(x) (x & -x)
#define base 10000
const int maxn = 5e4 + 5;
int n;
int a[maxn];
vector <int> v;
struct Bign {
int c[20],l;
Bign() {memset(c,0,sizeof(c));l = 1;}
void reset() {memset(c,0,sizeof(c));l = 1;}
void Print() {
printf("%d",c[l]);
for(int i = l - 1;i > 0;i--)printf("%04d",c[i]);
}
void operator = (const int &a) {
int x = a;
reset();
c[1] = x % base;x /= base;
while(x) {
c[++l] = x % base;x /= base;
}
}
Bign operator + (const Bign &a) {
Bign res;
res.l = max(l,a.l);
for(int i = 1;i <= res.l;i++) {
res.c[i] += c[i] + a.c[i];
res.c[i+1] = res.c[i] / base;
res.c[i] %= base;
}
if(res.c[res.l+1])res.l++;
return res;
}
Bign operator += (const Bign &a) {
*this = *this + a;
return *this;
}
}t[5][maxn];
inline int getid(int x) {return lower_bound(v.begin(),v.end(),x) - v.begin() + 1;}
inline void update(int pos,int x,Bign a) {
while (x <= n) {
t[pos][x] += a;
x += lowbit(x);
}
}
inline Bign query(int pos,int x) {
Bign res;
while(x) {
res += t[pos][x];
x -= lowbit(x);
}
return res;
}
int main() {
ios::sync_with_stdio(false);cin.tie(0);
while(cin >> n) {
v.clear();
for(int i = 0;i < n;i++) {
cin >> a[i];v.push_back(a[i]);
}
Bign ans;
sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());
memset(t,0,sizeof(t));
for(int i = 0;i < n;i++) {
int x = getid(a[i]);
Bign xx;xx = 1;
update(0,x,xx);
for(int i = 1;i < 5;i++) {
update(i,x,query(i-1,x-1));
}
}
ans = query(4,n);
ans.Print();printf("
");
}
return 0;
}