• poj 2379 Sum of Consecutive Prime Numbers


                                                                                                             Sum of Consecutive Prime Numbers
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 24498   Accepted: 13326

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2

    题意:某些数可以是连续质数的和,那么给定数a,求a的分解有几种可能。
    思路:先可以用埃氏筛选找出连续的质数,之后尺取法找可能的情况,值得注意的是两组可能的连续质数序列存在元素重叠的情况,所以每找到一组,尺取法的头部和尾部统一更新为上一种情况的尾部再加1,继续查找下一种情况。。。
    AC代码:
    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int N_MAX = 10000 + 4;
    int prime[N_MAX],res;
    bool is_prime[N_MAX+1],what;
    int sieve(int n) {
        int p = 0;
        for (int i = 0; i <= n; i++)is_prime[i] = true;
        is_prime[0] = is_prime[1] = false;
        for (int i = 2; i <= n; i++) {
            if (is_prime[i]) {
                prime[p++] = i;
                for (int j = i*i; j <= n; j += i)is_prime[j] = false;
            }
        }
        return  p;
    }
    int main() {
        int n=sieve(N_MAX),a;
        while (scanf("%d",&a)&&a) {
            res = 0,what = 0;
            int l= 0, r= 0, sum = 0;
            int bound=upper_bound(prime, prime + n, a)-prime;
            while (1) {////////
                for (;;) {////
                    while (r < bound&&sum < a) {
                        sum += prime[r++];
                    }
                    if (sum == a) {
                        res++;
                        what = 1;
                        break;
                    }
                    if (sum < a) {//找不到了,终止搜索;
                        what = 0;
                        break;
                    }
                    sum -= prime[l++];
                }////
                if (what) { l++; r = l; sum = 0; }
                else break;
            }////////
            printf("%d
    ", res);
        }
        return 0;
    }
  • 相关阅读:
    jQuery小技巧
    HTML5 学习指导
    js对象排序&&倒序
    JS 中如何判断字符串类型的数字
    JavaScript中function的多义性
    JS 继承
    45.oracle表类型、数据拆分、表分区
    44.oracle表空间的使用
    43.oracle同义词
    42.oracle物化视图
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/6480148.html
Copyright © 2020-2023  润新知