• 2017ACM/ICPC广西邀请赛-重现赛 1010.Query on A Tree


    Problem Description
    Monkey A lives on a tree, he always plays on this tree.

    One day, monkey A learned about one of the bit-operations, xor. He was keen of this interesting operation and wanted to practise it at once.

    Monkey A gave a value to each node on the tree. And he was curious about a problem.

    The problem is how large the xor result of number x and one node value of label y can be, when giving you a non-negative integer x and a node label u indicates that node y is in the subtree whose root is u(y can be equal to u).

    Can you help him?

    Input
    There are no more than 6 test cases.

    For each test case there are two positive integers n and q, indicate that the tree has n nodes and you need to answer q queries.

    Then two lines follow.

    The first line contains n non-negative integers V1,V2,⋯,Vn, indicating the value of node i.

    The second line contains n-1 non-negative integers F1,F2,⋯Fn−1, Fi means the father of node i+1.

    And then q lines follow.

    In the i-th line, there are two integers u and x, indicating that the node you pick should be in the subtree of u, and x has been described in the problem.

    2≤n,q≤105

    0≤Vi≤109

    1≤Fi≤n, the root of the tree is node 1.

    1≤u≤n,0≤x≤109

    Output
    For each query, just print an integer in a line indicating the largest result.

    Sample Input

    2 2
    1 2
    1
    1 3
    2 1

    Sample Output

    2
    3

    题目大意:一棵树,每一个节点有一个权值vi,有M组询问(u,x)表示求u的子树内某一个节点y,使得(v_y xor x) 最大
    解题报告:对于子树询问,一般转化为区间求解,此题没有修改,直接上莫队,对于xor操作取max,显然这是trie树的基本操作,所以此题就是个trie树维护的莫队,指针的移动对应trie树中的插入和删除.
    对于询问,我们在trie树中查询,我们尽量往和x相反的方向走即可
    复杂度:(O(nsqrt{n}log_2n))

    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #define RG register
    #define il inline
    #define iter iterator
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    using namespace std;
    const int N=1e5+5,M=6e6+5,maxdep=30;
    int gi(){
    	int str=0;char ch=getchar();
    	while(ch>'9' || ch<'0')ch=getchar();
    	while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
    	return str;
    }
    struct node{
    	int l,r,s;
    }t[M];
    int tot=0,w[35],root=0,n,Q,val[N],nxt[N<<1],to[N<<1],head[N];
    int num=0,blc;
    void link(int x,int y){
    	nxt[++num]=head[x];to[num]=y;head[x]=num;
    }
    void insert(int &rt,int x,int d,int to){
    	if(!rt)rt=++tot;
    	if(d==-1){
    		t[rt].s+=to;return ;
    	}
    	if(x&w[d])insert(t[rt].r,x,d-1,to);
    	else insert(t[rt].l,x,d-1,to);
    	t[rt].s=t[t[rt].l].s+t[t[rt].r].s;
    }
    int query(int &rt,int x,int d){
    	if(!rt || d==-1)return 0;
    	if(x&w[d]){
    		if(t[t[rt].l].s)return query(t[rt].l,x,d-1)+w[d];
    		return query(t[rt].r,x,d-1);
    	}
    	else{
    		if(t[t[rt].r].s)return query(t[rt].r,x,d-1)+w[d];
    		return query(t[rt].l,x,d-1);
    	}
    }
    int DFN=0,L[N],R[N],ans[N],dfn[N];
    void dfs(int x,int last){
    	int u;L[x]=++DFN;dfn[DFN]=x;
    	for(int i=head[x];i;i=nxt[i]){
    		u=to[i];if(u==last)continue;
    		dfs(u,x);
    	}
    	R[x]=DFN;
    }
    struct Ques{
    	int l,r,x,bs,id;
    	bool operator <(const Ques &pp)const{
    		if(bs!=pp.bs)return bs<pp.bs;
    		return r<pp.r;
    	}
    }q[N];
    void add(int i){
    	insert(root,val[dfn[i]],maxdep,1);
    }
    void delet(int i){
    	insert(root,val[dfn[i]],maxdep,-1);
    }
    void Clear(){
    	num=0;tot=0;DFN=0;root=0;memset(head,0,sizeof(head));
    	memset(t,0,sizeof(t));
    }
    void work()
    {
    	Clear();
    	int x,y;
    	blc=sqrt(n)+1;
    	for(int i=1;i<=n;i++)val[i]=gi();
    	for(int i=2;i<=n;i++){
    		x=gi();
    		link(x,i);link(i,x);
    	}
    	dfs(1,1);
    	for(int i=1;i<=Q;i++){
    		x=gi();y=gi();
    		q[i].l=L[x];q[i].r=R[x];q[i].x=y;
    		q[i].bs=q[i].l/blc;q[i].id=i;
    	}
    	sort(q+1,q+Q+1);
    	int l=1,r=0;
    	for(int i=1;i<=Q;i++){
    		while(r<q[i].r)r++,add(r);
    		while(l>q[i].l)l--,add(l);
    		while(r>q[i].r)delet(r),r--;
    		while(l<q[i].l)delet(l),l++;
    		ans[q[i].id]=query(root,q[i].x,maxdep);
    	}
    	for(int i=1;i<=Q;i++)printf("%d
    ",ans[i]);
    }
    
    int main()
    {
    	w[0]=1;for(int i=1;i<=maxdep;i++)w[i]=w[i-1]<<1;
    	while(~scanf("%d%d",&n,&Q))
    	work();
    	return 0;
    }
    
    
  • 相关阅读:
    mysql
    Linux下的C语言基础-4
    Linux下的C语言基础-3
    Linux下的C语言基础-2
    Linux下的C语言基础-1
    LeetCode:1375. 灯泡开关 III
    Jenkins+robotframework持续集成环境(三)
    Jenkins+robotframework持续集成环境(二)
    Jenkins+robotframework持续集成环境(一)
    robotframework操作使用
  • 原文地址:https://www.cnblogs.com/Yuzao/p/7459281.html
Copyright © 2020-2023  润新知