T(n) as the sum of all numbers which are positive integers can divied n. and S(n) = T(1) + T(2) + T(3)…..+T(n).
定义T(n)为n的因子和($sigma(n)$),求$S(n) % 2=sumlimits_{i=1}^{n}T(i) mod 2$,n<=1e9。
你总是说找规律,可是找规律已经累了。找规律不想对付数论题,它想做水题(这个就是呀),你考虑过它的感受吗?没有!你只关心你自己。找规律天下第一!(吃面)
$ans=sumlimits_{i=1}^{n}sumlimits_{d|i}d=sumlimits_{d}^{n}lfloorfrac{n}{d} floor d$
底数优化,重复项是等差数列的和(不用我说吧)..复杂度$O(sqrt{n})$
/** @Date : 2017-09-20 23:16:50 * @FileName: HDU 2608 分块 容斥.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; int main() { int T; cin >> T; while(T--) { LL n; scanf("%lld", &n); LL ans = 0; for(LL i = 1, j; i <= n; i = j + 1) { cout << i << endl; j = (n /(n / i)); ans += (n / i) * (i + j) * (j - i + 1) / 2; cout << ans << endl; } printf("%lld ", ans); } return 0; }