也是很模板的一道题,给出一些数,分割,模数固定是4个互质的。
/** @Date : 2017-09-16 23:54:51 * @FileName: HDU 1930 CRT.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; LL exgcd(LL a, LL b, LL &x, LL &y) { LL d = a; if(b == 0) x = 1, y = 0; else { d = exgcd(b, a % b, y, x); y -= (a / b) * x; } return d; } //非互质 LL crtCD(LL &rem, LL &mod, LL newRem, LL newMod) { LL c = newRem - rem;// c= r2 -r1 LL g = __gcd(mod, newMod); if(c % g!=0) return 0; LL x, y; exgcd(mod, newMod, x, y); LL t = newMod / g;// b/d LL minx = (c / g * x % t + t) % t;//x = x' * (c/g) mod (b/d) rem = minx * mod + rem;// newrem = mod * x + rem, mod = mod / g * newMod; //newmod = lcm(mod, newMod) return 1; } LL CRT(LL n, LL rem[], LL mod[]) { LL M = 1,x,y; for(int i = 0; i < n; i++) M *= mod[i]; LL res = 0; for(int i = 0; i < n; i++) { LL t = M / mod[i]; exgcd(t, mod[i], x, y); res = (res + t * rem[i] * x) % M; } return (res % M + M) % M; } int main() { int T; cin >> T; while(T--) { int n; cin >> n; LL mod[5]; LL rem[5]; for(int i = 0; i < 4; i++) scanf("%lld", mod + i); for(int i = 0; i < n; i++) { LL x; scanf("%lld", &x); rem[0] = x / 1000000; rem[1] = x / 10000 % 100; rem[2] = x / 100 % 100; rem[3] = x % 100; /*cout << endl; for(int j = 0; j < 4; j++) cout << rem[j] << " "; cout << endl;*/ LL nre = CRT(4, rem, mod); LL a = nre / 10000; LL b = nre / 100 % 100; LL c = nre % 100; //printf("%d %d %d~ ",a, b, c); //cout << nre << " "; if(i == n - 1) { printf("%c", a==27?' ':(a+'A'-1)); if(b != 27) printf("%c", (b+'A'-1)); if(c != 27) printf("%c", (c+'A'-1)); } else printf("%c%c%c", a==27?' ':(a+'A'-1), b==27?' ':(b+'A'-1), c==27?' ':(c+'A'-1)); } printf(" "); } return 0; }