EXGCD的模板水题
RSA算法
给你两个大素数p,q
定义n=pq,F(n)=(p-1)(q-1)
找一个数e 使得(e⊥F(n))
实际题目会给你e,p,q
计算d,$de mod F(n) = 1$
然后解密的值为$c_{i}^d mod n$,转换成char输出 用EXGCD求出d就好了
/** @Date : 2017-09-07 22:17:00 * @FileName: HDU 1211 EXGCD.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; LL exgcd(LL a, LL b, LL &x, LL &y) { LL d = a; if(b == 0) { x = 1; y = 0; } else { d = exgcd(b, a % b, y, x); y -= (a / b)*x; } return d; } LL fpow(LL a, LL n, LL mod) { LL res = 1; while(n) { if(n & 1) res = (res * a % mod + mod) %mod; a = (a * a % mod + mod) % mod; n >>= 1; } return res; } LL p, q, e, n; LL a[N]; int main() { while(~scanf("%lld%lld%lld%lld", &p, &q, &e, &n)) { for(int i = 0; i < n; i++) scanf("%lld", a + i); LL mod = p * q; LL fn = (p - 1) * (q - 1); for(int i = 0; i < n; i++) { LL d = 0 , y = 0; exgcd(e, fn, d, y); d = (d + fn) % fn; a[i] %= mod; LL ans = fpow(a[i], d, mod); printf("%c", fpow(a[i], d, mod) % mod); } printf(" "); } return 0; }