时间序列的相似性分析的理论和原理:
可按照以下几篇博客进行学习和查看分析即可
https://www.jianshu.com/p/e8e02cdc43d5?from=groupmessage
https://zhuanlan.zhihu.com/p/39450321
https://wenku.baidu.com/view/58dfefbc2b160b4e777fcf77.html
https://github.com/wannesm/dtaidistance
时间序列分析不同算法的实现:主要是进行相同时间段的数据的时序形状对比输出展示
#欧氏距离公式计算时间序列的相似度
import numpy as np
import matplotlib.pyplot as plt
def Oushidistance(s1,s2):
m=len(s1)
n=len(s2)
plt.plot(s1, "r", s2, "g")
plt.show()
s1 = (s1 - np.mean(s1)) / np.std(s1)
s2 = (s2 - np.mean(s2)) / np.std(s2)
distance=0
for i in range(m):
distance+=(s1[i]-s2[i])**2
return np.sqrt(distance)
if __name__ == '__main__':
s1 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1])
s2 = np.array([0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2])
s3 = np.array([0.8, 1.5, 0, 1.2, 0, 0, 0.6, 1, 1.2, 0, 0, 1, 0.2, 2.4, 0.5, 0.4])
s4 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1.5])
s5 = np.array([x+1 for x in s1])
print(Oushidistance(s1,s2))
print(Oushidistance(s1,s3))
print(Oushidistance(s1,s4))
print(Oushidistance(s1,s5))
#DWT算法的实现和对比分析展示
import numpy as np
import matplotlib.pyplot as plt
float_formatter = lambda x: "%.2f" % x
np.set_printoptions(formatter={'float_kind': float_formatter})
def TimeSeriesSimilarity(s1, s2):
l1 = len(s1)
l2 = len(s2)
plt.plot(s1, "r", s2, "g")
plt.show()
s1 = (s1 - np.mean(s1)) / np.std(s1)
s2 = (s2 - np.mean(s2)) / np.std(s2)
paths = np.full((l1 + 1, l2 + 1), np.inf) # 全部赋予无穷大
paths[0, 0] = 0
for i in range(l1):
for j in range(l2):
d = s1[i] - s2[j]
cost = d ** 2
paths[i + 1, j + 1] = cost + min(paths[i, j + 1], paths[i + 1, j], paths[i, j])
paths = np.sqrt(paths)
s = paths[l1, l2]
return s, paths.T
if __name__ == '__main__':
s1 = [1, 2, 0, 1, 1, 2]
s2 = [1, 0, 1]
s2 = [3,5,1,3,3,5]
plt.plot(s1,"r",s2,"g")
plt.show()
print(s1,s2)
distance, paths = TimeSeriesSimilarity(s1, s2)
print(distance)
s1 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1])
s2 = np.array([0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2])
s3 = np.array([0.8, 1.5, 0, 1.2, 0, 0, 0.6, 1, 1.2, 0, 0, 1, 0.2, 2.4, 0.5, 0.4])
s4 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1.5])
s5 = np.array([x + 1 for x in s1])
distance, paths = TimeSeriesSimilarity(s1, s2)
print(distance)
distance, paths = TimeSeriesSimilarity(s1, s3)
print(distance)
distance, paths = TimeSeriesSimilarity(s1, s4)
print(distance)
distance, paths = TimeSeriesSimilarity(s1, s5)
print(distance)
#基于形态相似度计算的时间序列相似度计算
import numpy as np
import matplotlib.pyplot as plt
def Oushidistance(s1,s2):
m=len(s1)
n=len(s2)
plt.plot(s1, "r", s2, "g")
plt.show()
s1 = (s1 - np.mean(s1)) / np.std(s1)
s2 = (s2 - np.mean(s2)) / np.std(s2)
distance=np.sqrt(np.sum((s1-s2)**2))
ASD=abs(np.sum(s1-s2))
SAD=np.sum(abs(s1-s2))
if SAD==0:
return 0
else:
distance1=distance*(2-ASD/SAD)
return distance1
if __name__ == '__main__':
s1 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1])
s2 = np.array([0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2])
s3 = np.array([0.8, 1.5, 0, 1.2, 0, 0, 0.6, 1, 1.2, 0, 0, 1, 0.2, 2.4, 0.5, 0.4])
s4 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1.5])
s5 = np.array([x + 1 for x in s1])
print(Oushidistance(s1,s2))
print(Oushidistance(s1,s3))
print(Oushidistance(s1,s4))
print(Oushidistance(s1,s5))
#改进版本的DWT算法1实现展示
import numpy as np
import math
def get_common_seq(best_path, threshold=1):
com_ls = []
pre = best_path[0]
length = 1
for i, element in enumerate(best_path):
if i == 0:
continue
cur = best_path[i]
if cur[0] == pre[0] + 1 and cur[1] == pre[1] + 1:
length = length + 1
else:
com_ls.append(length)
length = 1
pre = cur
com_ls.append(length)
return list(filter(lambda num: True if threshold < num else False, com_ls))
def calculate_attenuate_weight(seqLen, com_ls):
weight = 0
for comlen in com_ls:
weight = weight + (comlen * comlen) / (seqLen * seqLen)
return 1 - math.sqrt(weight)
def best_path(paths):
"""Compute the optimal path from the nxm warping paths matrix."""
i, j = int(paths.shape[0] - 1), int(paths.shape[1] - 1)
p = []
if paths[i, j] != -1:
p.append((i - 1, j - 1))
while i > 0 and j > 0:
c = np.argmin([paths[i - 1, j - 1], paths[i - 1, j], paths[i, j - 1]])
if c == 0:
i, j = i - 1, j - 1
elif c == 1:
i = i - 1
elif c == 2:
j = j - 1
if paths[i, j] != -1:
p.append((i - 1, j - 1))
p.pop()
p.reverse()
return p
def TimeSeriesSimilarity(s1, s2):
l1 = len(s1)
l2 = len(s2)
paths = np.full((l1 + 1, l2 + 1), np.inf) # 全部赋予无穷大
paths[0, 0] = 0
s1 = (s1 - np.mean(s1)) / np.std(s1)
s2 = (s2 - np.mean(s2)) / np.std(s2)
for i in range(l1):
for j in range(l2):
d = s1[i] - s2[j]
cost = d ** 2
paths[i + 1, j + 1] = cost + min(paths[i, j + 1], paths[i + 1, j], paths[i, j])
paths = np.sqrt(paths)
s = paths[l1, l2]
return s, paths.T
if __name__ == '__main__':
# 测试数据
s1 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1])
s2 = np.array([0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2])
s3 = np.array([0.8, 1.5, 0, 1.2, 0, 0, 0.6, 1, 1.2, 0, 0, 1, 0.2, 2.4, 0.5, 0.4])
# 原始算法
distance12, paths12 = TimeSeriesSimilarity(s1, s2)
distance13, paths13 = TimeSeriesSimilarity(s1, s3)
print("更新前s1和s2距离:" + str(distance12))
print("更新前s1和s3距离:" + str(distance13))
best_path12 = best_path(paths12)
best_path13 = best_path(paths13)
# 衰减系数
com_ls1 = get_common_seq(best_path12)
com_ls2 = get_common_seq(best_path13)
# print(len(best_path12), com_ls1)
# print(len(best_path13), com_ls2)
weight12 = calculate_attenuate_weight(len(best_path12), com_ls1)
weight13 = calculate_attenuate_weight(len(best_path13), com_ls2)
# 更新距离
print("更新后s1和s2距离:" + str(distance12 * weight12))
print("更新后s1和s3距离:" + str(distance13 * weight13))
#改进版本的DWT算法实现第二种方式
import numpy as np
float_formatter = lambda x: "%.2f" % x
np.set_printoptions(formatter={'float_kind': float_formatter})
def TimeSeriesSimilarityImprove(s1, s2):
# 取较大的标准差
sdt = np.std(s1, ddof=1) if np.std(s1, ddof=1) > np.std(s2, ddof=1) else np.std(s2, ddof=1)
# print("两个序列最大标准差:" + str(sdt))
l1 = len(s1)
l2 = len(s2)
paths = np.full((l1 + 1, l2 + 1), np.inf) # 全部赋予无穷大
sub_matrix = np.full((l1, l2), 0) # 全部赋予0
max_sub_len = 0
s1 = (s1 - np.mean(s1)) / np.std(s1)
s2 = (s2 - np.mean(s2)) / np.std(s2)
paths[0, 0] = 0
for i in range(l1):
for j in range(l2):
d = s1[i] - s2[j]
cost = d ** 2
paths[i + 1, j + 1] = cost + min(paths[i, j + 1], paths[i + 1, j], paths[i, j])
if np.abs(s1[i] - s2[j]) < sdt:
if i == 0 or j == 0:
sub_matrix[i][j] = 1
else:
sub_matrix[i][j] = sub_matrix[i - 1][j - 1] + 1
max_sub_len = sub_matrix[i][j] if sub_matrix[i][j] > max_sub_len else max_sub_len
paths = np.sqrt(paths)
s = paths[l1, l2]
#return s, paths.T, [max_sub_len]
weight = 0
for comlen in [max_sub_len]:
weight = weight + comlen / len(s1) * comlen / len(s2)
a=1 - weight
distance=s*a
return distance
if __name__ == '__main__':
# 测试数据
s1 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1])
s2 = np.array([0, 1, 1, 2, 0, 1, 1.7, 2, 0, 1, 1, 2, 0, 1, 1, 2])
s3 = np.array([0.8, 1.5, 0, 1.2, 0, 0, 0.6, 1, 1.2, 0, 0, 1, 0.2, 2.4, 0.5, 0.4])
s4 = np.array([1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 2])
s5 = np.array([x + 1 for x in s1])
print(TimeSeriesSimilarityImprove(s1, s2))
print(TimeSeriesSimilarityImprove(s1, s3))
print(TimeSeriesSimilarityImprove(s1, s4))
print(TimeSeriesSimilarityImprove(s1, s5))
时间序列分析对比展示图像