• 任务安排


    题目描述

    N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

    例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

    输入输出格式

    输入格式:
    第一行是N(1<=N<=5000)。

    第二行是S(0<=S<=50)。

    下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

    输出格式:
    一个数,最小的总费用。

    输入输出样例

    输入样例#1:
    5
    1
    1 3
    3 2
    4 3
    2 3
    1 4
    输出样例#1:
    153
    .
    .
    .
    .
    .
    .

    分析

    这道题采用动态规划的思想,用f[i]表示完成前i个任务所需的最小费用,用tim[i]表示前i项任务所需的时间,用mon[i]表示前i项任务一共的费用系数。动归式如下:

    f[i]=min{f[j-1]+s*(mon[n]-mon[j-1])+
    tim[i]*(mon[i]-mon[j-1])|1<=j<=i};

    如果在完成第j项任务是启动一次机器,后面的所有任务完成的时刻都要加上s,所以每启动一次机器的费用为s*(mon[n]-mon[j-1]);
    如果把第j项任务和第i项任务和在一起做,则它们的完成时刻为tim[i],所以费用为tim[i]*(mon[i]-mon[j-1])。
    .
    .
    .
    .
    .
    .

    程序:
    #include<iostream>
    #include<cstdlib>
    #include<cstdio>
    using namespace std;
    int f[5001],g[5001];
    int len,wei,n,tim[5001],mon[5001],ti[5001],s;
    int main ()
    {
        scanf("%d%d",&n,&s);
        for (int b=1;b<=n;++b)
        {
            scanf("%d%d",&tim[b],&mon[b]);
            tim[b]+=tim[b-1];
            mon[b]+=mon[b-1];
            f[b]=2147483647;
        }
        for (int i=1;i<=n;++i)
        for (int j=1;j<=i;++j)
        f[i]=min(f[i],f[j-1]+s*(mon[n]-mon[j-1])+tim[i]*(mon[i]-mon[j-1]));
        printf("%d",f[n]);
        return 0;
    }
  • 相关阅读:
    elk
    WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! 解决方法
    openssh 升级到8.2版本 (Linux 7)
    Linux 结合grep kill掉指定字符进程
    mysql 主从由于事务性挂断执行语句
    plsql 安装
    linux 7 本地化安装docker (阿里云版)
    docker 配置加速器
    Oracle 归档日志
    多线程事件
  • 原文地址:https://www.cnblogs.com/YYC-0304/p/9499970.html
Copyright © 2020-2023  润新知