• (动态规划)matrix -- hdu -- 5569


    http://acm.hdu.edu.cn/showproblem.php?pid=5569

     

    matrix

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 325    Accepted Submission(s): 196


    Problem Description
    Given a matrix with n rows and m columns ( n+m is an odd number ), at first , you begin with the number at top-left corner (1,1) and you want to go to the number at bottom-right corner (n,m). And you must go right or go down every steps. Let the numbers you go through become an array a1,a2,...,a2k. The cost is a1a2+a3a4+...+a2k1a2k. What is the minimum of the cost?
     

     

    Input
    Several test cases(about 5)

    For each cases, first come 2 integers, n,m(1n1000,1m1000)

    N+m is an odd number.

    Then follows n lines with m numbers ai,j(1ai100)
     

     

    Output
    For each cases, please output an integer in a line as the answer.
     

     

    Sample Input
    2 3
    1 2 3
    2 2 1
    2 3
    2 2 1
    1 2 4
     

     

    Sample Output
    4
    8
     

     

    Source

     

     写完这题, 我意识到了动态规划最重要的便是状态转移, 虽然以前听别人说, 但是到底没有自己真正体会到的来的贴切

     

    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    #include<algorithm>
    #include<queue>
    using namespace std;
    
    const int N = 1100;
    
    int a[N][N], dp[N][N];
    
    int main()
    {
        int n, m, i, j;
    
        while(scanf("%d%d", &n, &m)!=EOF)
        {
            for(i=1; i<=n; i++)
            for(j=1; j<=m; j++)
                scanf("%d", &a[i][j]);
    
            memset(dp, 0x3f3f3f3f, sizeof(dp));
    
            for(i=1; i<=n; i++)
            for(j=1; j<=m; j++)
            {
                if(i==1 && j==1)
                    dp[i][j] = 0;
                else if((i+j)&1)
                {
                    dp[i][j] = min(dp[i-1][j]+a[i-1][j]*a[i][j], dp[i][j-1]+a[i][j-1]*a[i][j]);
                }
                else
                    dp[i][j] = min(dp[i-1][j], dp[i][j-1]);
            }
    
            printf("%d
    ", dp[n][m]);
        }
        return 0;
    }

     

    勿忘初心
  • 相关阅读:
    java工程中的相关路径
    cxf 消息寻址
    cxf数据压缩
    cxf开发Restful Web Services
    cxf构建webservice的两种方式
    使用cxf构建webservice
    thumbnailator图片处理
    WinFom中经典小游戏(含源码)
    WinForm中使用DDE技术(含源码)
    EntityFrameWork连接多Db配置
  • 原文地址:https://www.cnblogs.com/YY56/p/4988538.html
Copyright © 2020-2023  润新知