http://acm.hdu.edu.cn/showproblem.php?pid=5569
matrix
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 325 Accepted Submission(s): 196
Problem Description
Given a matrix with n rows and m columns ( n+m is an odd number ), at first , you begin with the number at top-left corner (1,1) and you want to go to the number at bottom-right corner (n,m). And you must go right or go down every steps. Let the numbers you go through become an array a1,a2,...,a2k. The cost is a1∗a2+a3∗a4+...+a2k−1∗a2k. What is the minimum of the cost?
Input
Several test cases(about 5)
For each cases, first come 2 integers, n,m(1≤n≤1000,1≤m≤1000)
N+m is an odd number.
Then follows n lines with m numbers ai,j(1≤ai≤100)
For each cases, first come 2 integers, n,m(1≤n≤1000,1≤m≤1000)
N+m is an odd number.
Then follows n lines with m numbers ai,j(1≤ai≤100)
Output
For each cases, please output an integer in a line as the answer.
Sample Input
2 3
1 2 3
2 2 1
2 3
2 2 1
1 2 4
Sample Output
4
8
Source
写完这题, 我意识到了动态规划最重要的便是状态转移, 虽然以前听别人说, 但是到底没有自己真正体会到的来的贴切
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 1100;
int a[N][N], dp[N][N];
int main()
{
int n, m, i, j;
while(scanf("%d%d", &n, &m)!=EOF)
{
for(i=1; i<=n; i++)
for(j=1; j<=m; j++)
scanf("%d", &a[i][j]);
memset(dp, 0x3f3f3f3f, sizeof(dp));
for(i=1; i<=n; i++)
for(j=1; j<=m; j++)
{
if(i==1 && j==1)
dp[i][j] = 0;
else if((i+j)&1)
{
dp[i][j] = min(dp[i-1][j]+a[i-1][j]*a[i][j], dp[i][j-1]+a[i][j-1]*a[i][j]);
}
else
dp[i][j] = min(dp[i-1][j], dp[i][j-1]);
}
printf("%d
", dp[n][m]);
}
return 0;
}