• [poj1734] Sightseeing trip


    Sightseeing trip

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8520   Accepted: 3200   Special Judge

    Description

    There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route. 

    In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

    Input

    The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

    Output

    There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

    Sample Input

    5 7
    1 4 1
    1 3 300
    3 1 10
    1 2 16
    2 3 100
    2 5 15
    5 3 20
    

    Sample Output

    1 3 5 2
    

    Source

     

    题意:

    给定一张无向图,求图中一个至少包含 3 个点的环,环上的节点不重复,并且环上的边的长度之和最小。该问题称为无向图的最小环问题。

    在本题中,你需要输出最小环的方案,若最小环不唯一,输出任意一个均可。若无解,输出 No solution.

    图的节点数不超过 100

     

    题解:

    找环的一般方法即是直接搜索,但复杂度较高且不稳定,我们需要寻求一种复杂度较优秀的算法。

    注意到经常使用的$Floyd$算法是基于动态规划思想,依次经由$1-N$号中转点更新$dis(i,j)$的。

    那么在更新$k$中转点之前的$dis(i,j)$即为严格不经过$k$的最短路,在该路径上加上$i ightarrow k$和$k ightarrow j$后一定是一个环。

    我们对于所有形如上述的$i,j,k$取$min$即能得到该图的最小环。记录路径输出即可。

     

    代码:

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    
    using namespace std;
    #define MAXN 105
    #define MAXM 500005
    #define INF 0x3f3f3f3f
    #define ll long long
    
    ll mp[MAXN][MAXN],dis[MAXN][MAXN];
    ll ans[MAXN],pre[MAXN][MAXN],cnt;
    
    inline ll read(){
        ll x=0,f=1;
        char c=getchar();
        for(;!isdigit(c);c=getchar())
            if(c=='-')
                f=-1;
        for(;isdigit(c);c=getchar())
            x=x*10+c-'0';
        return x*f;
    }
    
    inline void add(ll u,ll v){
        if(!pre[u][v]) return;
        add(u,pre[u][v]);
        ans[++cnt]=pre[u][v];
        add(pre[u][v],v);
        return;    
    }
    
    int main(){
        ll N=read(),M=read();
        memset(dis,27,sizeof(dis));
        memset(mp,27,sizeof(mp));
        for(ll i=1;i<=M;i++){
            ll u=read(),v=read(),w=read();
            mp[u][v]=mp[v][u]=w;
            dis[u][v]=dis[v][u]=w;
        }
        for(ll i=1;i<=N;i++) 
            dis[i][i]=0,mp[i][i]=0;
        ll minans=INF;
        for(ll k=1;k<=N;k++){
            for(ll i=1;i<k;i++)
                for(ll j=i+1;j<k;j++)
                    if(dis[i][j]+mp[i][k]+mp[k][j]<minans){
                        //cout<<dis[i][j]<<" "<<mp[i][k]<<" "<<mp[k][j]<<endl;
                        //cout<<i<<" "<<j<<" "<<k<<endl;
                        minans=dis[i][j]+mp[i][k]+mp[k][j];
                        cnt=0,ans[++cnt]=i,add(i,j);
                        ans[++cnt]=j,ans[++cnt]=k;
                    }
            for(ll i=1;i<=N;i++)
                for(ll j=1;j<=N;j++)
                    if(dis[i][j]>dis[i][k]+dis[k][j])
                        dis[i][j]=dis[i][k]+dis[k][j],pre[i][j]=k;
        }
        if(minans==INF){
            printf("No solution.
    ");
            return 0;
        }
        printf("%d",ans[1]);
        for(ll i=2;i<=cnt;i++) 
            printf(" %d",ans[i]);
        printf("
    ");
        return 0;
    }
    //skeleton
  • 相关阅读:
    USACO1.3.3Calf Flac
    USACO1.3.1Mixing Milk
    USACO1.3.2Barn Repair
    USACO2.1.4Healthy Holsteins
    USACO1.5.2Prime Palindromes
    USACO1.4.2The Clocks
    USACO2.1.2Ordered Fractions
    PHP关联数组教程
    你的服务器没有正确响应Token验证的解决方法
    微信公众平台消息接口开发(10)语音触发(非识别)
  • 原文地址:https://www.cnblogs.com/YSFAC/p/9877082.html
Copyright © 2020-2023  润新知