• 平衡树


    平衡树

    Treap实现

    思路:

    利用堆的性质, 让二叉搜索数满足堆的性质,从而达到logn的高度.
    模板
    具体解释看注释,注释也不多(逃)

    代码:

    /*
     * 平衡数Treap模板
     * Treap 可以理解为一棵树加上一个堆, 通过对每个节点赋予一个随机值
     * 在满足堆的性质的同时满足二叉搜索树的性质, 保证树的高度尽量为logn,
     * 这样就不会出现较坏的情况
     */
    #include <bits/stdc++.h>
    using namespace std;
    const int MAXN = 1e6+10;
    const int INF = 1e9;
    
    struct Treap
    {
        int l, r;//左儿子和右儿子的标号
        int data;//节点的随机值
        int val;//节点维护的值
        int cnt;//节点当前值的数量
        int size;//当前子树的值
    }treap[MAXN];
    int cnt, root, n;//节点总数
    
    void PushUp(int p)
    {
        //向上更新
        treap[p].size = treap[treap[p].l].size+treap[treap[p].r].size+treap[p].cnt;
    }
    
    void RotateRight(int &p)
    {
        //右旋操作
        int q = treap[p].l;
        treap[p].l = treap[q].r;
        treap[q].r = p;
        p = q;
        PushUp(treap[p].r);
        PushUp(p);
    }
    
    void RotateLeft(int &p)
    {
        //左旋操作
        int q = treap[p].r;
        treap[p].r = treap[q].l;
        treap[q].l = p;
        p = q;
        PushUp(treap[p].l);
        PushUp(p);
    }
    
    int NewNode(int val)
    {
        ++cnt;
        treap[cnt].val = val;
        treap[cnt].cnt = treap[cnt].size = 1;
        treap[cnt].data = rand();
        treap[cnt].l = treap[cnt].r = -1;//表示没有子节点
        return cnt;
    }
    
    void Build()
    {
        //初始化建个树用来判断边界条件
        NewNode(-INF), NewNode(INF);
        root = 1;//根节点初始化
        treap[root].r = 2;
        PushUp(root);
    }
    
    void Insert(int &p, int val)
    {
        //插入节点
        if (p == -1)
        {
            //说明这个节点没有使用
            p = NewNode(val);
            return;
        }
        if (val == treap[p].val)
        {
            //查询到相同值
            treap[p].cnt++;
            PushUp(p);
            return;
        }
        if (val < treap[p].val)
        {
            //往左节点移动
            Insert(treap[p].l, val);
            //根据data值来调整树的高度
            if (treap[p].data < treap[treap[p].l].data)
                RotateRight(p);
        }
        else
        {
            //往右节点移动
            Insert(treap[p].r, val);
            if (treap[p].data < treap[treap[p].r].data)
                RotateLeft(p);
        }
        PushUp(p);//更新
    }
    
    void Remove(int &p, int val)
    {
        //删除节点即将要删除的点给移动到叶子节点再进行删除即可.
        if (p == -1)
            return;
        //不存在这个值
        if (val == treap[p].val)
        {
            if (treap[p].cnt > 1)
            {
                treap[p].cnt--;
                PushUp(p);
                return;
            }
            if (treap[p].l != -1 || treap[p].r != -1)
            {
                if (treap[p].r == -1 || treap[treap[p].l].data > treap[treap[p].r].data)
                {
                    RotateRight(p);
                    Remove(treap[p].r, val);
                }
                else
                {
                    RotateLeft(p);
                    Remove(treap[p].l, val);
                }
                PushUp(p);
            }
            else
            {
                p = -1;
                return;
            }
        }
        if (val < treap[p].val)
            Remove(treap[p].l, val);
        else
            Remove(treap[p].r, val);
        PushUp(p);
    }
    
    int GetRankByVal(int p, int val)
    {
        //得到某个值的排名
        if (p == -1)
            return 0;
        if (val == treap[p].val)
            return treap[treap[p].l].size + 1;
        if (val < treap[p].val)
            return GetRankByVal(treap[p].l, val);
        return GetRankByVal(treap[p].r, val)+treap[treap[p].l].size+treap[p].cnt;
    }
    
    int GetValByRank(int p, int rank)
    {
        //找到排名对应的值
        if (p == -1)
            return INF;
        if (treap[treap[p].l].size >= rank)
            return GetValByRank(treap[p].l, rank);
        if (treap[treap[p].l].size + treap[p].cnt >= rank)
            return treap[p].val;
        return GetValByRank(treap[p].r, rank-treap[treap[p].l].size-treap[p].cnt);
    }
    
    int GetPre(int val)
    {
        int ans = 1;//treap[1].val = -INF
        int p = root;
        while (p != -1)
        {
            if (val == treap[p].val)
            {
                if (treap[p].l != -1)
                {
                    p = treap[p].l;
                    while (treap[p].r != -1)//在左子树上一直往右走
                        p = treap[p].r;
                    ans = p;
                }
                break;
            }
            if (treap[p].val < val && treap[p].val > treap[ans].val)
                ans = p;
            if (val < treap[p].val)
                p = treap[p].l;
            else
                p = treap[p].r;
        }
        return treap[ans].val;
    }
    
    int GetNext(int val)
    {
        int ans = 2;//treap[2].val = INF
        int p = root;
        while (p != -1)
        {
            if (treap[p].val == val)
            {
                if (treap[p].r != -1)
                {
                    p = treap[p].r;
                    while (treap[p].l != -1)
                        p = treap[p].l;
                    ans = p;
                }
                break;
            }
            if (treap[p].val > val && treap[p].val < treap[ans].val)
                ans = p;
            if (val < treap[p].val)
                p = treap[p].l;
            else
                p = treap[p].r;
        }
        return treap[ans].val;
    }
    
    int main()
    {
        Build();
        scanf("%d", &n);
        int opt, val;
        while (n--)
        {
            scanf("%d%d", &opt, &val);
            switch (opt)
            {
                case 1:
                    Insert(root, val);
                    break;
                case 2:
                    Remove(root, val);
                    break;
                case 3:
                    printf("%d
    ", GetRankByVal(root, val)-1);
                    break;
                case 4:
                    printf("%d
    ", GetValByRank(root, val+1));
                    break;
                case 5:
                    printf("%d
    ", GetPre(val));
                    break;
                case 6:
                    printf("%d
    ", GetNext(val));
                    break;
            }
        }
    
        return 0;
    }
    
  • 相关阅读:
    静态类和静态类成员(C# 编程指南)
    sealed(C# 参考)
    C#高级知识点概要(2)
    线程并发和异步
    CXF+Spring+Hibernate实现RESTful webservice服务端实例
    Spring Boot 实现RESTful webservice服务端实例
    Spring Boot 实现RESTful webservice服务端示例
    Spring Boot REST API 自动化测试
    Biee插入图形时报错-超过了已配置的已允许输出提示, 区域, 行或列的最大数目
    BIEE安装一直卡在最后一步解决办法
  • 原文地址:https://www.cnblogs.com/YDDDD/p/11517270.html
Copyright © 2020-2023  润新知