• [vp]CF1529(div2)


    https://codeforces.com/contest/1529

    (A)
    选择最小的数,其他数都会被删去,最后只剩下最小的数。
    排序统计一下最小数的个数即可。

    (O(nlog_n))

    (B)
    很显然正整数只能选择一个,非正数可以全部一起选。
    我们先统计非正数的个数,然后选择最小的正数,
    判断是否会使非正数个数减少(排序后检查相邻的),如果更劣就不选。

    (O(nlog_n))

    (C)
    显然每个点只有(l_i)(r_i)两种取值,
    然后直接树(dp)
    (dp_{v,0}+=max(dp_{u,0}+|l_v−l_u|,dp_{u,1}+|l_v−r_u|))
    (dp_{v,1}+=max(dp_{u,0}+|r_v−l_u|,dp_{u,1}+|r_v−r_u|))

    (D)

    我们考虑点(1)连出去的点(x)
    如果(x>n),那么(2,3,4...)连出的长度都应该与(1)相等,最后就只剩下中间的一块空白,
    (画图理解即可)
    而这块空白就是一个独立的子问题
    如果(x) (<) (n),那么很显然就是多个不相交的相等的连线,所以个数便是(n)约数的个数。
    那么设(f_n)(n)的答案。
    所以(f_n =D(n)+ sum_{i=0}^{n-1}f_i),((D(n))表示(n)的约数个数)
    提前筛出(D(n)),前缀和统计(f(n)),即可(O(1))转移。

    (O(n))

    (E)

    我们设两棵树为(A)树和(B)
    将题目转化一下就是让我们在(A)中找一条以根节点为起点的链,
    从上面选出尽量多的点,使得每个点在(B)树中都不是另一个点的祖先。
    (A)树进行一遍(dfs),动态维护一个点集,设我们要加入的当前点为(u)
    我们只需要在点集中查找是否会有一个点(v)使得(u)无法加入点集,
    不存在我们直接加入,否则就是以下两种情况。
    (以下对于(B)树)

    (1). 如果(v)(u)的子树里,根据贪心中的决策包容性,深度越大的更优,我们跳过(u)这个点。
    (2). 如果(v)(u)的祖先,同理,我们去掉(v),换成(u)

    我们把加入的点在(B)树中染成黑色,那么也就是询问:

    (1). (u)的子树里是否有黑点。
    (2). (u)(1)的路径上是否有黑点。

    用树剖维护信息(黑色看成(1),白色看成(0),支持单点修改,查询最值)。

    (O(nlog_n))

    (F)

    如果没有停留这个功能的话,直接用(dijkstra)就行,
    重点在于如何处理停留。
    我们建(n)条新边((i,(i+1) mod~n,1))
    如果此时要停留(c)秒从(u)(v),
    等价于先到(v-c),然后再走新边(c)次到达(v)
    显然第一次不能走新边,否则相当于多等了一秒。
    我们对于每个点跑一次(dijkstra)即可。
    注意这题边数过多,只能用没有堆优化的(dijkstra)

  • 相关阅读:
    [转载]美国名校的与机器视觉相关的研发中心网址
    图像匹配方法浅谈
    Debug FFMpeg with CodeBlock
    zircobrowser 源代码学习 一个Android平台的浏览器,适合用在学UI
    iPhone addSubview sameview 是否会产生内存泄漏
    Android 游戏demo
    C# 多线程 注意问题 总结
    Builld with gloox
    论坛专用
    VMware vSphere Client(4.1/5.0/5.1/5.5/6.0) 客户端下载地址
  • 原文地址:https://www.cnblogs.com/Xxhdjr/p/14818590.html
Copyright © 2020-2023  润新知