part 1
对于
最多只有 (2 * sqrt n) 个取值
证明
显然
part 2
当 $ l = i $ 时 , (r = left lfloor frac n {left lfloor frac n l ight floor} ight floor) , 此时
且 (r) 就是这个值 $ (left lfloor frac n l ight floor)$ 的右边界
证明 ( 反证法 )
首先 (left lfloor frac n l ight floor = left lfloor frac n r ight floor) 即 (left lfloor frac n l ight floor = left lfloor frac n {left lfloor frac n {left lfloor frac n l ight floor} ight floor} ight floor)
设 (t = left lfloor frac n l
ight
floor , n = t * l + r , l> r) , 那么原式 $ = left lfloor frac n {left lfloor frac {t * l + r} {t}
ight
floor}
ight
floor $ , 对 $ t < rand t >= r $,分类讨论即可
如果 (r) 不是右边界,则一定有 (t = left lfloor frac n {r+1} ight floor = left lfloor frac n r ight floor)
则 $ n geq t * (r+1) , left lfloor frac n t ight floor geq frac{(r + 1) * t}{t}, left lfloor frac n t ight floor geq r + 1 $
根据定义 (left lfloor frac n t ight floor = r , r geq r + 1) ,与事实不符