• HDOJ1061 Rightmost Digit[简单数学题]


    Rightmost Digit

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 19050    Accepted Submission(s): 7329


    Problem Description
    Given a positive integer N, you should output the most right digit of N^N.
     
    Input
    The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
    Each test case contains a single positive integer N(1<=N<=1,000,000,000).
     
    Output
    For each test case, you should output the rightmost digit of N^N.
     
    Sample Input
    2 3 4
     
    Sample Output
    7 6
    Hint
    In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
     
    Author
    Ignatius.L
     
     
     
     
     
     
     
     
    code:
     1 #include<iostream>
     2 using namespace std;
     3 
     4 int table[10][10]={
     5     0,0,0,0,0,0,0,0,0,0,
     6     1,1,1,1,1,1,1,1,1,1,
     7     2,4,8,6,2,4,8,6,2,4,
     8     3,9,7,1,3,9,7,1,3,9,
     9     4,6,4,6,4,6,4,6,4,6,
    10     5,5,5,5,5,5,5,5,5,5,
    11     6,6,6,6,6,6,6,6,6,6,
    12     7,9,3,1,7,9,3,1,7,9,
    13     8,4,2,6,8,4,2,6,8,4,
    14     9,1,9,1,9,1,9,1,9,1
    15 };
    16 
    17 int cnt[10]={10,10,4,4,2,10,10,4,4,2};
    18 
    19 int main()
    20 {
    21     int t;
    22     int n;
    23     scanf("%d",&t);
    24     while(t--)
    25     {
    26         scanf("%d",&n);
    27         int temp=n;
    28         temp%=10;
    29         if(!temp)
    30         {
    31             printf("0\n");
    32             continue;
    33         }
    34         printf("%d\n",table[temp][(n-1)%cnt[temp]]);
    35     }
    36     return 0;
    37 }
  • 相关阅读:
    邮件发送工具类
    redis在项目中配置
    搭建zookeeper集群
    activeMQ安装
    solr安装配置中文分词IK
    reids安装
    jdk/tomcat/mysql在linux下安装
    使用poi进行excel导入
    linux 大杂烩
    找包网址
  • 原文地址:https://www.cnblogs.com/XBWer/p/2645000.html
Copyright © 2020-2023  润新知