Children’s Queue
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6000 Accepted Submission(s): 1887
Problem Description
There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side. The case n=4 (n is the number of children) is like
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
Input
There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (1<=n<=1000)
Output
For each test case, there is only one integer means the number of queue satisfied the headmaster’s needs.
Sample Input
1 2 3
Sample Output
1 2 4
Author
SmallBeer (CML)
Source
Recommend
lcy
别人的解法:
F(n)表示n个人的合法队列
按照最后一个人的性别分析,他要么是男,要么是女,所以可以分两大类讨论:
1、如果n个人的合法队列的最后一个人是男,则对前面n-1个人的队列没有任何限制,他只要站在最后即可,所以,这种情况一共有F(n-1);
2、如果n个人的合法队列的最后一个人是女,则要求队列的第n-1个人务必也是女生,这就是说,限定了最后两个人必须都是女生,这又可以分两种情况:
2.1、如果队列的前n-2个人是合法的队列,则显然后面再加两个女生,也一定是合法的,这种情况有F(n-2);
2.2、但是,难点在于,即使前面n-2个人不是合法的队列,加上两个女生也有可能是合法的,当然,这种长度为n-2的不合法队列,不合法的地方必须是尾巴,就是说,这里说的长度是n-2的不合法串的形式必须是“F(n-4)+男+女”,这种情况一共有F(n-4).
所以,通过以上的分析,可以得到递推的通项公式:
F(n)=F(n-1)+F(n-2)+F(n-4) (n>3)
按照最后一个人的性别分析,他要么是男,要么是女,所以可以分两大类讨论:
1、如果n个人的合法队列的最后一个人是男,则对前面n-1个人的队列没有任何限制,他只要站在最后即可,所以,这种情况一共有F(n-1);
2、如果n个人的合法队列的最后一个人是女,则要求队列的第n-1个人务必也是女生,这就是说,限定了最后两个人必须都是女生,这又可以分两种情况:
2.1、如果队列的前n-2个人是合法的队列,则显然后面再加两个女生,也一定是合法的,这种情况有F(n-2);
2.2、但是,难点在于,即使前面n-2个人不是合法的队列,加上两个女生也有可能是合法的,当然,这种长度为n-2的不合法队列,不合法的地方必须是尾巴,就是说,这里说的长度是n-2的不合法串的形式必须是“F(n-4)+男+女”,这种情况一共有F(n-4).
所以,通过以上的分析,可以得到递推的通项公式:
F(n)=F(n-1)+F(n-2)+F(n-4) (n>3)
知道递推公式就不难了- -
code:
1 import java.util.*; 2 import java.math.*; 3 4 public class Main 5 { 6 public static void main(String []args) 7 { 8 int n; 9 int i; 10 Scanner cin=new Scanner(System.in); 11 BigInteger []result=new BigInteger[1002]; 12 result[1]=BigInteger.valueOf(1); 13 result[2]=BigInteger.valueOf(2); 14 result[3]=BigInteger.valueOf(4); 15 result[4]=BigInteger.valueOf(7); 16 for(i=5;i<=1000;i++) 17 result[i]=result[i-1].add(result[i-2].add(result[i-4])); 18 while(cin.hasNext()) 19 { 20 n=cin.nextInt(); 21 System.out.println(result[n]); 22 } 23 } 24 }