• 【转】01背包问题动态规划详解


    转载自 sunstar1989
    最终编辑 中华复生母

    动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。
    比如01背包问题。

    因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。
    测试数据:
    10,3
    3,4
    4,5
    5,6

    c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.

    这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)

    从以上最大价值的构造过程中可以看出。

    f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

    下面是实际程序:

     1 #include<stdio.h>
     2 int c[10][100];
     3 int knapsack(int m,int n)
     4 {
     5     int i,j,w[10],p[10];
     6     for(i=1;i<n+1;i++)
     7         scanf("\n%d,%d",&w[i],&p[i]);
     8     for(i=0;i<10;i++)
     9         for(j=0;j<100;j++)
    10             c[i][j]=0;
    11     for(i=1;i<n+1;i++)
    12         for(j=1;j<m+1;j++)
    13         {
    14             if(w[i]<=j)
    15             {
    16                 if(p[i]+c[i-1][j-w[i]]>c[i-1][j])
    17                     c[i][j]=p[i]+c[i-1][j-w[i]];
    18                 else
    19                     c[i][j]=c[i-1][j];
    20             }
    21             else c[i][j]=c[i-1][j];
    22         }
    23     return(c[n][m]);        
    24 }
    25 
    26 int main()
    27 {
    28     int m,n;int i,j;
    29     scanf("%d,%d",&m,&n);
    30     printf("Input each one:\n");
    31     printf("%d",knapsack(m,n));
    32     printf("\n");
    33     for(i=0;i<10;i++)
    34         for(j=0;j<15;j++)
    35         {
    36             printf("%d ",c[i][j]);
    37             if(j==14)printf("\n");
    38         }
    39         system("pause");
    40 }

    -----------------------------------------------------------------------------------------------------------------------------------

    题目

    有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

    基本思路

    这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

    用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

    f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

    这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

    优化空间复杂度

    以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

    先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

    for i=1..N
        for v=V..0
            f[v]=max{f[v],f[v-c[i]]+w[i]};

    其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

    事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

    过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

    procedure ZeroOnePack(cost,weight)
        for v=V..cost
            f[v]=max{f[v],f[v-cost]+weight}

    注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

    有了这个过程以后,01背包问题的伪代码就可以这样写:

    for i=1..N
        ZeroOnePack(c[i],w[i]);

    初始化的细节问题

    我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

    如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

    如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

    为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

    这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

    一个常数优化

    前面的伪代码中有 for v=V..1,可以将这个循环的下限进行改进。

    由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。以此类推,对以第j个背包,其实只需要知道到f[v-sum{w[j..n]}]即可,即代码中的

    for i=1..N
        for v=V..0

    可以改成

    for i=1..n
        bound=max{V-sum{w[i..n]},c[i]}
        for v=V..bound

    这对于V比较大时是有用的。

    小结

    01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。







                If you have any questions about this article, welcome to leave a message on the message board.



    Brad(Bowen) Xu
    E-Mail : maxxbw1992@gmail.com


  • 相关阅读:
    Java设计模式の工厂模式
    写Java代码分别使堆溢出,栈溢出
    Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析
    Java集合---ConcurrentHashMap原理分析
    Java 集合类详解
    HashMap详谈以及实现原理
    Java设计模式の代理模式
    Java设计模式の单例模式
    mysql之 navicat表权限设置
    MySQL之You can't specify target table for update in FROM clause解决办法
  • 原文地址:https://www.cnblogs.com/XBWer/p/2595861.html
Copyright © 2020-2023  润新知