• P3413 SAC#1


    题目链接

      很明显,我们很难直接求出“包含长度大于等于2的回文串”的字符的个数,但是我们却可以较为容易的求出“不包含任何长度大于等于2的回文串”的字符的个数,那么我们不如采用正难则反的策略,用总的减去不合法的,那么得到的就是合法的串的个数了。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cmath>
      4 #include <string>
      5 #include <cstring>
      6 #include <algorithm>
      7 #include <limits>
      8 #include <vector>
      9 #include <stack>
     10 #include <queue>
     11 #include <set>
     12 #include <map>
     13 #include <bitset>
     14 #include <unordered_map>
     15 #include <unordered_set>
     16 #define lowbit(x) ( x&(-x) )
     17 #define pi 3.141592653589793
     18 #define e 2.718281828459045
     19 #define INF 0x3f3f3f3f
     20 #define HalF (l + r)>>1
     21 #define lsn rt<<1
     22 #define rsn rt<<1|1
     23 #define Lson lsn, l, mid
     24 #define Rson rsn, mid+1, r
     25 #define QL Lson, ql, qr
     26 #define QR Rson, ql, qr
     27 #define myself rt, l, r
     28 #define pii pair<int, int>
     29 #define MP(a, b) make_pair(a, b)
     30 using namespace std;
     31 typedef unsigned long long ull;
     32 typedef unsigned int uit;
     33 typedef long long ll;
     34 const int maxN = 1e3 + 7;
     35 const ll mod = 1e9 + 7;
     36 char l[maxN], r[maxN];
     37 int dig[maxN];
     38 void MOD(ll &x) { x >= mod ? x %= mod : x; }
     39 ll dp[maxN][10][10];
     40 ll dfs(int pos, int x, int lx, bool top, bool zero)
     41 {
     42     if(pos == 1) return 1;
     43     if(!top && (~dp[pos][lx][x])) return dp[pos][lx][x];
     44     ll sum = 0;
     45     int u = top ? dig[pos - 1] : 9;
     46     for(int i = 0; i <= u; i ++)
     47     {
     48         if(i)
     49         {
     50             if(i == x) continue;
     51             if(i == lx) continue;
     52         }
     53         else
     54         {
     55             if(!zero && i == lx) continue;
     56             if(!zero && i == x) continue;
     57         }
     58         sum += dfs(pos - 1, i, x, top && (i == u), zero && (!x));
     59         MOD(sum);
     60     }
     61     if(!top && !zero) dp[pos][lx][x] = sum;
     62     return sum;
     63 }
     64 ll solve(char *s)
     65 {
     66     ll ans = 0;
     67     memset(dig, 0, sizeof(dig));
     68     int len = (int)strlen(s);
     69     for(int i = 0; i < len; i ++) dig[len - i] = s[i] - '0';
     70     ll all = 0;
     71     for(int i = len; i >= 1; i --)
     72     {
     73         all = all * 10 + dig[i];
     74         MOD(all);
     75     }
     76     memset(dp, -1, sizeof(dp));
     77     ans = dfs(1002, 0, 0, true, true);
     78     ans = all - ans + mod; MOD(ans);
     79     return ans;
     80 }
     81 int main()
     82 {
     83     scanf("%s%s", l, r);
     84     bool zero = true;
     85     int len = (int)strlen(l);
     86     for(int i = 0; zero && i < len; i ++) if(l[i] ^ '0') zero = false;
     87     ll x, y;
     88     if(!zero)
     89     {
     90         l[len - 1] -= 1;
     91         int tmp = len - 1;
     92         while(l[tmp] < '0')
     93         {
     94             l[tmp - 1] --;
     95             l[tmp] = '9';
     96             tmp --;
     97         }
     98         if(!tmp)
     99         {
    100             while(l[tmp] == '0') tmp ++;
    101             for(int i = 0; i + tmp < len; i ++) l[i] = l[i + tmp];
    102             l[len - tmp] = '';
    103             if(len == tmp)
    104             {
    105                 l[0] = '0';
    106                 l[1] = '';
    107             }
    108         }
    109         x = solve(l);
    110     }
    111     else x = 0;
    112     y = solve(r);
    113     printf("%lld
    ", (y - x + mod) % mod);
    114     return 0;
    115 }
  • 相关阅读:
    org.apache.xerces.dom.ElementNSImpl.setUserData(Ljava/lang/String;Ljava/lang
    case when then 中判断null的方法
    Oracle 傻瓜式数据归档
    Object type TYPE failed to create with error
    导出表结构到Excel 生成代码用
    Intellij 高亮显示与选中字符串相同的内容
    自定义命令杀死 java 进程 alias kjava
    R语言包_dplyr_1
    dplyr包
    在天河二号上对比Julia,Python和R语言
  • 原文地址:https://www.cnblogs.com/WuliWuliiii/p/14138559.html
Copyright © 2020-2023  润新知