• [HDU6129]Just do it


    Description
    There is a nonnegative integer sequence (a_{1...n}) of length (n). HazelFan wants to do a type of transformation called prefix-XOR, which means (a_{1...n}) changes into (b_{1...n}), where (b_i) equals to the XOR value of (a_1,...,a_i). He will repeat it for m times, please tell him the final sequence.

    Input
    The first line contains a positive integer (T(1leqslant Tleqslant 5)), denoting the number of test cases.
    For each test case:
    The first line contains two positive integers (n,m(1leqslant nleqslant 2×10^5,1leqslant mleqslant 10^9)).
    The second line contains (n) nonnegative integers (a_{1...n}(0leqslant a_ileqslant 2^{30}−1)).

    Output
    For each test case:
    A single line contains (n) nonnegative integers, denoting the final sequence.

    Sample Input

    2
    1 1
    1
    3 3
    1 2 3
    

    Sample Output

    1
    1 3 1
    

    显然,直接暴力做m次前缀异或和是不可行的,我们先用变量列几个数出来找一下规律

    (记(otimes)为异或操作,(a^k)表示有(k)(a)进行异或操作)

    次数 (a) (b) (c) (d)
    1 (a) (aotimes b) (aotimes botimes c) (aotimes botimes cotimes d)
    2 (a) (a^2otimes b) (a^3otimes b^2otimes c) (a^4otimes b^3otimes c^2otimes d)
    3 (a) (a^3otimes b) (a^6otimes b^3otimes c) (a^{10}otimes b^6otimes c^3otimes d)

    可以发现,对于表格中的某个位置(A[i][j])而言,其可以写成(A[i][j]=A[i-1][j]otimes A[i][j-1]),这个形式十分类似于杨辉三角,而将整个表格顺时针旋转45°后,单独查看某个变量的系数,其就是杨辉三角

    稍加推理可得,对于数列中第(i)个数,其在做完(m)次操作后,对第(j)位数((i<j))的贡献是(inom{(m-1)+(j-i)}{m-1})

    但直接计算的话肯定会超时。我们注意到这是异或操作,故只有奇数次的贡献才是有效的,根据组合数奇偶性定理可得,当(n & k=k)时,(inom{n}{k})才为奇数

    将该定理代入之前的式子,很容易得到((m-1) & (j-i)=0),即((j-i)_2)中1的位置必定是((m-1)_2)中0的位置

    我们再按照01背包的思路,每次枚举出一个((m-1)_2)的0的位置,可得到(2^k((m-1) & 2^k=0)),再将每个数的贡献累加到其之后(2^k)的位置上的数即可

    /*program from Wolfycz*/
    #include<map>
    #include<cmath>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define Fi first
    #define Se second
    #define ll_inf 1e18
    #define MK make_pair
    #define sqr(x) ((x)*(x))
    #define pii pair<int,int>
    #define int_inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline char gc(){
    	static char buf[1000000],*p1=buf,*p2=buf;
    	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
    }
    template<typename T>inline T frd(T x){
    	int f=1; char ch=gc();
    	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')    f=-1;
    	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    template<typename T>inline T read(T x){
    	int f=1; char ch=getchar();
    	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
    	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    inline void print(int x){
    	if (x<0)	putchar('-'),x=-x;
    	if (x>9)	print(x/10);
    	putchar(x%10+'0');
    }
    const int N=2e5;
    int A[N+10];
    int main(){
    //	freopen(".in","r",stdin);
    //	freopen(".out","w",stdout);
    	int T=read(0);
    	while (T--){
    		int n=read(0),m=read(0)-1;
    		for (int i=1;i<=n;i++)	A[i]=read(0);
    		for (int j=30;~j;j--){
    			if (m&(1<<j))	continue;
    			for (int i=n;i>1<<j;i--)
    				A[i]^=A[i-(1<<j)];
    		}
    		for (int i=1;i<=n;i++){
    			printf("%d",A[i]);
    			putchar(i==n?'
    ':' ');
    		}
    	}
    	return 0;
    }
    
    作者:Wolfycz
    本文版权归作者和博客园共有,欢迎转载,但必须在文章开头注明原文出处,否则保留追究法律责任的权利
  • 相关阅读:
    Thread.sleep(0)的意义& 多线程详解
    .NET AOP的实现
    UML详解
    asp.net事件委托易理解实例
    2个或多个datable类似于sql inner join 合并查询
    web.cofing(新手必看)
    JS操作URL
    .net对象转Datable
    NPOI读写Excel
    RSA加密
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/14930372.html
Copyright © 2020-2023  润新知