• [BZOJ1269]文本编辑器editor


    Problem

    有n个操作

    Solution

    splay模板题,用splay维护下标。

    Notice

    需要把l的前一个位置旋转到根,r的后一个位置旋转到根的右节点。所以特别要注意0的大坑。

    Code

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 2200000;
    const double eps = 1e-6, phi = acos(-1);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    int point = 0, root, pre, suf, ans, pos = 2;
    char st[N + 5];
    struct node
    {
    	char val[N + 5];
    	int count[N + 5], son[2][N + 5], parent[N + 5], tag[N + 5];
    	inline void up(int u)
    	{
    		count[u] = count[son[0][u]] + count[son[1][u]] + 1;
    	}
    	inline void New(int &u, char ch, int last)
    	{
    		u = ++point;
    		parent[u] = last;
    		val[u] = ch;
    		son[0][u] = son[1][u] = tag[u] = 0;
    	}
    	inline void change(int u)
    	{
    		if (u == 0) return;
    		tag[u] ^= 1;
    		swap(son[0][u], son[1][u]);
    	}
    	inline void down(int u)
    	{
    		if (u == 0 || tag[u] == 0) return;
    		change(son[0][u]), change(son[1][u]);
    		tag[u] = 0;
    	}
    	inline void build()
    	{
    		New(root, '~', 0);
    		New(son[1][root], '~', root);
    		up(root);
    	}
    
    	void Rotate(int x, int &rt)
    	{
    		int y = parent[x], z = parent[y];
    		int l = (son[1][y] == x), r = 1 - l;
    		if (y == rt) rt = x;
    		else if (son[0][z] == y) son[0][z] = x;
    		else son[1][z] = x;
    		parent[x] = z;
    		parent[son[r][x]] = y, son[l][y] = son[r][x];
    		parent[y] = x, son[r][x] = y;
    		up(y);
    		up(x);
    	}
    
    	void Splay(int x, int &rt)
    	{
    		while (x != rt)
    		{
    			int y = parent[x], z = parent[y];
    			if (y != rt)
    			{
    				if ((son[0][z] == y) ^ (son[0][y] == x))
    					Rotate(x, rt);
    				else Rotate(y, rt);
    			}
    			Rotate(x, rt);
    		}
    	}
    
    	int Find(int u, int x)
    	{
    		down(u);
    		if (x == count[son[0][u]] + 1) return u;
    		else if (x <= count[son[0][u]]) return Find(son[0][u], x);
    		else return Find(son[1][u], x - count[son[0][u]] - 1);
    	}
    
    	void Insert(int &u, int l, int r, int last)
    	{
    		int mid = (l + r) >> 1;
    		New(u, st[mid], last);
    		if (l < mid) Insert(son[0][u], l, mid - 1, u);
    		if (r > mid) Insert(son[1][u], mid + 1, r, u);
    		up(u);
    	}
    
    	void adjust(int l, int r)
    	{
    		int x = Find(root, l - 1), y = Find(root, r + 1);
    		Splay(x, root), Splay(y, son[1][root]);
    	}
    
    	void solve1()
    	{
    		int t = read();
    		adjust(pos, pos - 1);
    		gets(st);
    		Insert(son[0][son[1][root]], 0, t - 1, son[1][root]);
    		up(son[1][root]), up(root);
    	}
    
    	void solve2()
    	{
    		int t = read();
    		adjust(pos, pos + t - 1);
    		parent[son[0][son[1][root]]] = 0, son[0][son[1][root]] = 0;
    		up(son[1][root]), up(root);
    	}
    
    	void solve3()
    	{
    		int t = read();
    		adjust(pos, pos + t - 1);
    		change(son[0][son[1][root]]);
    	}
    
    	void solve4()
    	{
    		int t = Find(root, pos);
    		printf("%c
    ", val[t]);
    	}
    }Splay_tree;
    int sqz()
    {
    	Splay_tree.build();
    	int H_H = read();
    	char op[10];
    	while(H_H--)
    	{
    		scanf("%s", op);
    		if (op[0] == 'I') Splay_tree.solve1();
    		else if (op[0] == 'M') pos = read() + 2;
    		else if (op[0] == 'P') --pos;
    		else if (op[0] == 'N') ++pos;
    		else if (op[0] == 'D') Splay_tree.solve2();
    		else if (op[0] == 'R') Splay_tree.solve3();
    		else Splay_tree.solve4();
    	}
    	return 0;
    }
    
  • 相关阅读:
    合并、媒体查询
    混入、命名空间(less)、继承
    函数(内置函数 和 自定义函数)
    运算、单位、转义、颜色
    选择器嵌套、伪类嵌套、属性嵌套(只在Sass中)
    注释、变量、插值、作用域
    二路归并排序java实现
    堆排序Java实现
    和为S的连续正数序列——牛客网(剑指offer)
    transient 与 volatile 笔记
  • 原文地址:https://www.cnblogs.com/WizardCowboy/p/7615204.html
Copyright © 2020-2023  润新知