---恢复内容开始---
http://wenku.baidu.com/view/63e7b8270066f5335a812142.html
有一个二维数组,0表示路,-1表示墙,求其中任意两点的最短路径。
我们先看,怎么求一条路径:求两点路径是一个数据结构上的典型的迷宫问题,很多数据结构的书上都有介绍,解决办法如下:
从一点开始出发,向四个方向查找,每走一步,把走过的点的值+1(即本节点值+1),防止重复行走,并把走过的点压入堆栈(表示路径),如果遇到墙、或者已走过的点则不能前进,如果前方已经无路可走,则返回,路径退栈,这样递归调用,直到找到终点为止。
迷宫如下图所示:
从(2, 1)到(6, 8),程序如下所示:
{
int _X, _Y;
Postion(){}
Postion(int X, int Y)
: _X(X), _Y(Y){}
};
bool isCanGo(const int prePosValue,
const int posX,
const int posY)
{
if ( posX < 0 || posX > 9 // 越界
|| posY < 0 || posY > 9
|| maze[posX][posY] == -1 // 墙
|| maze[posX][posY] >= 1) // 走过
{
return false;
}
return true;
}
stack<Postion> path__; //路径
Postion offset[4]; //路径
bool shortestPath(stack<Postion> &path,
const Postion &start,
const Postion &end)
{
if ( start._X == end._X
&& start._Y == end._Y)
{
path__ = path;
return true;
}
for (int i = 0; i < 4; i++)
{
int nNextPos_X = start._X + offset[i]._X;
int nNextPos_Y = start._Y + offset[i]._Y;
if (isCanGo(maze[start._X][start._Y], nNextPos_X, nNextPos_Y))
{
maze[nNextPos_X][nNextPos_Y] = maze[start._X][start._Y] + 1;
path.push(Postion(nNextPos_X, nNextPos_Y));
if (shortestPath(path, Postion(nNextPos_X, nNextPos_Y), end))
return true;
path.pop();
}
}
return false;
}
int main(int argc, char* argv[])
{
offset[0]._X = -1; offset[0]._Y = 0; // 上
offset[1]._X = 1; offset[1]._Y = 0; // 下
offset[2]._X = 0; offset[2]._Y = -1; // 左
offset[3]._X = 0; offset[3]._Y = 1; // 右
printMat(maze);
Postion start(2, 1), end(6, 8);
maze[start._X][start._Y] = 1; // 置起点值1, 防止走回起点
shortestPath(stack<Postion>(), start, end);
printPath(path__);
printMat(maze);
return 0;
}
这时,我们经过运算,到达终点,有44步之多。如果我们调整调用offset的顺序,即先左右,后上下,可能会得到更短的路径,但无法确保在任何情况下都能得到最短路径。
得到最短路径的方法,解决方法如下:
每走一步,就对前方的节点赋值为此节点+1,走过的路径也可以重复行走。但有一个条件,就是本节点+1必须小于已走过的节点的权值(墙不能走),这样走遍所有的节点,记录最短的路径。
主要修改了以下两个函数:
const int posX,
const int posY)
{
if ( posX < 0 || posX > 9 // 越界
|| posY < 0 || posY > 9
|| maze[posX][posY] == -1) // 墙
{
return false;
}
if (maze[posX][posY] == 0) // 未走过
return true;
else // 更近的路径
return (prePosValue + 1) < maze[posX][posY];
}
void shortestPath(stack<Postion> &path,
const Postion &start,
const Postion &end)
{
if ( start._X == end._X
&& start._Y == end._Y)
{
if (path.size() < path__.size() || path__.empty()) // 更短的路径
path__ = path;
return;
}
for (int i = 0; i < 4; i++)
{
int nNextPos_X = start._X + offset[i]._X;
int nNextPos_Y = start._Y + offset[i]._Y;
if (isCanGo(maze[start._X][start._Y], nNextPos_X, nNextPos_Y))
{
maze[nNextPos_X][nNextPos_Y] = maze[start._X][start._Y] + 1;
path.push(Postion(nNextPos_X, nNextPos_Y));
shortestPath(path, Postion(nNextPos_X, nNextPos_Y), end);
path.pop();
}
}
}
我上传了两个工程,求一条路径的程序点此下载,求最短路径的程序点此下载。
文章结束!愿它对您有所帮助
---恢复内容结束---
http://wenku.baidu.com/view/63e7b8270066f5335a812142.html
有一个二维数组,0表示路,-1表示墙,求其中任意两点的最短路径。
我们先看,怎么求一条路径:求两点路径是一个数据结构上的典型的迷宫问题,很多数据结构的书上都有介绍,解决办法如下:
从一点开始出发,向四个方向查找,每走一步,把走过的点的值+1(即本节点值+1),防止重复行走,并把走过的点压入堆栈(表示路径),如果遇到墙、或者已走过的点则不能前进,如果前方已经无路可走,则返回,路径退栈,这样递归调用,直到找到终点为止。
迷宫如下图所示:
从(2, 1)到(6, 8),程序如下所示:
{
int _X, _Y;
Postion(){}
Postion(int X, int Y)
: _X(X), _Y(Y){}
};
bool isCanGo(const int prePosValue,
const int posX,
const int posY)
{
if ( posX < 0 || posX > 9 // 越界
|| posY < 0 || posY > 9
|| maze[posX][posY] == -1 // 墙
|| maze[posX][posY] >= 1) // 走过
{
return false;
}
return true;
}
stack<Postion> path__; //路径
Postion offset[4]; //路径
bool shortestPath(stack<Postion> &path,
const Postion &start,
const Postion &end)
{
if ( start._X == end._X
&& start._Y == end._Y)
{
path__ = path;
return true;
}
for (int i = 0; i < 4; i++)
{
int nNextPos_X = start._X + offset[i]._X;
int nNextPos_Y = start._Y + offset[i]._Y;
if (isCanGo(maze[start._X][start._Y], nNextPos_X, nNextPos_Y))
{
maze[nNextPos_X][nNextPos_Y] = maze[start._X][start._Y] + 1;
path.push(Postion(nNextPos_X, nNextPos_Y));
if (shortestPath(path, Postion(nNextPos_X, nNextPos_Y), end))
return true;
path.pop();
}
}
return false;
}
int main(int argc, char* argv[])
{
offset[0]._X = -1; offset[0]._Y = 0; // 上
offset[1]._X = 1; offset[1]._Y = 0; // 下
offset[2]._X = 0; offset[2]._Y = -1; // 左
offset[3]._X = 0; offset[3]._Y = 1; // 右
printMat(maze);
Postion start(2, 1), end(6, 8);
maze[start._X][start._Y] = 1; // 置起点值1, 防止走回起点
shortestPath(stack<Postion>(), start, end);
printPath(path__);
printMat(maze);
return 0;
}
这时,我们经过运算,到达终点,有44步之多。如果我们调整调用offset的顺序,即先左右,后上下,可能会得到更短的路径,但无法确保在任何情况下都能得到最短路径。
得到最短路径的方法,解决方法如下:
每走一步,就对前方的节点赋值为此节点+1,走过的路径也可以重复行走。但有一个条件,就是本节点+1必须小于已走过的节点的权值(墙不能走),这样走遍所有的节点,记录最短的路径。
主要修改了以下两个函数:
const int posX,
const int posY)
{
if ( posX < 0 || posX > 9 // 越界
|| posY < 0 || posY > 9
|| maze[posX][posY] == -1) // 墙
{
return false;
}
if (maze[posX][posY] == 0) // 未走过
return true;
else // 更近的路径
return (prePosValue + 1) < maze[posX][posY];
}
void shortestPath(stack<Postion> &path,
const Postion &start,
const Postion &end)
{
if ( start._X == end._X
&& start._Y == end._Y)
{
if (path.size() < path__.size() || path__.empty()) // 更短的路径
path__ = path;
return;
}
for (int i = 0; i < 4; i++)
{
int nNextPos_X = start._X + offset[i]._X;
int nNextPos_Y = start._Y + offset[i]._Y;
if (isCanGo(maze[start._X][start._Y], nNextPos_X, nNextPos_Y))
{
maze[nNextPos_X][nNextPos_Y] = maze[start._X][start._Y] + 1;
path.push(Postion(nNextPos_X, nNextPos_Y));
shortestPath(path, Postion(nNextPos_X, nNextPos_Y), end);
path.pop();
}
}
}
我上传了两个工程,求一条路径的程序点此下载,求最短路径的程序点此下载。
文章结束!愿它对您有所帮助